

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 1 of 51 Printed: 05.04.05 09:55

CardMan 5121 RFID Developers guide

Document Version: 1.01

Abstract:

Disclaimer:

This document describes the easy usability of CardMan 5121 contactless
interface for developers.

Last modified: 04.04.2005

Copyright  2004 by OMNIKEY AG

All Rights Reserved.
The information in this document may not be changed without express written
agreement of OMNIKEY AG.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 2 of 51 Printed: 05.04.05 09:55

Table Of Contents

1 Document Information 4
1.1 Change History 4
1.2 Further Reading 4
1.3 Terms and Abbreviations 5

2 Scope 7
3 Installation 8
4 Diagnostic Tool 9

4.1 Usage 9
4.2 Change card detection order 10

5 ATR generation 11
5.1 Memory Cards (T≠CL) 11

5.1.1 Lower nibble of Card Type identifier 11
5.1.2 Higher nibble of Card Type identifier 12
5.1.3 Examples 13

5.2 Asynchronous Cards (T=CL) 13
5.2.1 Examples 14

6 Access asynchronous cards 15
7 Access synchronous cards (Memory cards) 16

7.1 Overview 17
7.2 Functions 17

7.2.1 SCardCLGetUID 17
7.2.2 SCardCLMifareLightWrite 18
7.2.3 SCardCLMifareStdAuthent 18
7.2.4 SCardCLMifareStdDecrementVal 19
7.2.5 SCardCLMifareStdIncrementVal 20
7.2.6 SCardCLMifareStdRead 21
7.2.7 SCardCLMifareStdRestoreVal 21
7.2.8 SCardCLMifareStdWrite 22
7.2.9 SCardCLWriteMifareKeyToReader 23
7.2.10 SCardCLWriteTransmissionKeyToReader 24
7.2.11 SCardCLICCTransmit 25

8 Standard Communication with iCLASS Cards 26
8.1 APDU structure for Standard communication 26
8.2 Supported INS in the standard communication 27

8.2.1 Select Page 27
8.2.2 Load Key 29

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 3 of 51 Printed: 05.04.05 09:55

8.2.3 GetKeyInfo 31
8.2.4 Authenticate command: 33
8.2.5 Read command: 35
8.2.6 Update command: 36

8.3 Communication flow diagram for iCLASS card 37
8.3.1 Some Remarks on the communication structure: 37

9 Inter industry commands for synchronous cards 39
10 Mifare Security Support 40

10.1 Reader to Card secured transmission 40
10.2 Host to Reader secured transmission 40

11 Performance 42
11.1 Supported baud rates 42
11.2 DESFire Working speed from an example application 42

12 Application Programming 44
12.1 Sample project 44

12.1.1 Overview 44
12.1.2 Reader Related functions 45
12.1.3 Mifare Card Related functions 45
12.1.4 ISO 7816 - APDU 45

12.2 Code snippets 46
12.2.1 Connect card 46
12.2.2 Mifare 1K/4K Authenticate 47
12.2.3 Mifare 1K/4K Read/Write 48
12.2.4 Mifare 1K/4K Increment/Decrement 49
12.2.5 iCLASS Select Page 49

13 Tested cards 51

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 4 of 51 Printed: 05.04.05 09:55

1 Document Information

1.1 Change History

Version Authors Date Description

1.00 AI, CT 14-12-2004 Initial Version

1.01 AI 05-04-2005 iCLASS Standard support added

1.2 Further Reading

[MIFARE] MIFARE Datasheets

http://www.semiconductors.philips.com/markets/identification/datasheets/index.html -
mifare

[PCSC] PC/SC Workgroup Specifications 2.0

http://www.pcscworkgroup.com/

[PICO16KS] PICOTAG and PICOCRYPT secured 16KS data sheet from the Inside Contactless

[PICO2KS] PICOTAG and PICOCRYPT secured 2KS data sheet from the Inside Contactless

[ISO7816-4] Information technology Identification cards Integrated circuit(s) cards with contacts Part 4:
Interindustry commands for interchange

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 5 of 51 Printed: 05.04.05 09:55

1.3 Terms and Abbreviations

Unique Card Serial Number (CSNR):

Eight-byte unique serial number of each iCLASS card.

Customer Read Key (KCUR):

Sixteen-byte Customer Read Key will give the application only read capability of the iCLASS card.
This default key will be used only once for the low-level security command “Select Page” in every
session.

Customer Write Key (KCUW):

Sixteen-byte Customer Write Key will give the application read and write capability of the iCLASS
card. This default key will be used only once for the low-level security command “Select Page” in
every session.

Customer Transmission Key Current (KCUC):

Sixteen-byte Customer Transmission key Current will be used for the encryption of current
transmission from the host to the reader.

In every session KCUC0 = KCUR, if this is read only session.

In every session KCUC0 = KCUW, if this is read and write session.

Customer Transmission Key Next (KCUN):

Sixteen-byte Customer Transmission key Next will be provided by the application in each
data gram send to the reader, which will be used for the encryption of the reply of the data
gram, then will be considered as the Customer Transmission Key Current

KCUC n+1 = KCUN n ; where n is the number of transaction in a session.

HID Master key Current (KMDC):

Eight-byte key will be used for authentication of HID Application.

HID Master key Old (KMDO):

If the HID Master key Current is changed then the previous KMDC will be stored as KMDO.

Inside Application Master key Current (KIAMC):

Eight-byte key will be used for authentication of card application area other than HID
Application. The reader supports two KIAMC: one volatile and one non-volatile.

Card Data Encryption Key (KENC):

Sixteen-byte key will be used for 3-DES encryption of data to be stored in the card.

Data Header (DH):

https://www.cardlogix.com/product-category/card-readers/hid-omnikey-smart-card-readers/

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 6 of 51 Printed: 05.04.05 09:55

4-byte Data header will be in the starting of each data gram.

CRC16:

In the end of each data gram there will be 2-byte CRC for integrity check.

INSData:

Instruction specific data byte.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 7 of 51 Printed: 05.04.05 09:55

2 Scope

The CardMan 5121 is a combined contact and contactless reader. It can only read one card at a time,
because it logically supports only one slot. So the access to contact and contactless cards can only be
done sequentially at the moment.

This document is the developers guide for CardMan 5121. It describes the how to work with
contactless cards. The functionally in conjunction with contact cards is the same as in CardMan 3121,
so its developers guide can be used to develop applications that use contact cards.

The organization of this document is as follows:

Chapter 3 describes the installation of the device.

Chapter 4 explains the functionality and usage of the diagnostic tool, which is installed with the driver.

Chapter 5 explains, how ATRs are generated for contactless cards, that normally do not have an
ATR.

Chapter 6 describes how asynchronous cards are used.

Chapter 7 describes how synchronous cards (memory cards) are used. Additionally the synchronous
API is described.

Chapter 8 explains, iCLASS support through the sync API function.

Chapter 9 explains, what inter-industry commands for contactless memory cards are supported by
this reader.

Chapter 10 explains the security concepts of the CardMan 5121.

Chapter 11 handles some performance issues.

Chapter 12 gives the application programmer some help how to write applications using contactless
cards.

Chapter 13 lists tested cards, that are known to work with CardMan 5121.

https://www.cardlogix.com/product/hid-omnikey-5121-rfid-contactless-smart-card-reader/
https://www.cardlogix.com/product/hid-omnikey-3121-usb-smart-card-reader/

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 8 of 51 Printed: 05.04.05 09:55

3 Installation

For driver installation refer to the “CardMan 5121 Installation manual”.

If the installation was successful, the green LED on the reader will light up and the reader is listed in
the diagnostic tool.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 9 of 51 Printed: 05.04.05 09:55

4 Diagnostic Tool

The Diagnostic tool is a small control panel applet. It can be used to list all installed OMNIKEY
readers, show file and driver version and change the settings for card detection order.

4.1 Usage

Diagnostic Tool is started from the Control Panel. The Tab General shows if the Resource Manager
is running, which readers are installed and active and the versions of some files, related to the drivers.
The Tab APIs shows the installed APIs (e.g. synchronous API) and their version numbers.

Figure 1: Diagnostic Tool, General Tab

Figure 2: Diagnostic Tool, API Tab

Every installed and active reader has its own tab:

Figure 3: Diagnostic Tool, Reader Tab

Figure 4: Diagnostic Tool, Reader Tab
(Card inserted)

The field Status shows if a card is inserted or not and if it is responding. The field Smart Card Name
gives the name of the smart card and its UID. The fields ATR and Protocol give the ATR of the card
and the Protocol (e.g. T=CL).

https://www.cardlogix.com/product-category/smart-cards/

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 10 of 51 Printed: 05.04.05 09:55

4.2 Change card detection order

For contactless cards there are many different standards, which require special activation routines
(e.g. ISO14443A, ISO14443B, ISO15694, …). As there is no physical card presence switch for the
contactless cards, the reader has to check always if there is a card in the field. This is done by trying
to do all activation sequences for different card standards. As there can be only on RF field, this
activation sequences has to be done sequentially, which takes some time.

To increase the card detection speed, it is possible to deactivate some activation sequences in the
reader. For example the detection of a card may be up to six times faster with only one activation
sequence instead of six. Additionally the order in which the activation sequences are done can be set.

To activate the RFID settings dialog, use the right mouse button on the title bar of the Diagnostic Tool
window to show the system menu. In this menu choose View->RFID settings. A new Tab will appear.

Figure 5: Diagnostic Tool, activate RFID
settings

Figure 6: Diagnostic Tool, RFID settings
Tab

In this Tab the card types to detect can be chosen. In the left list are the active card types (If the list is
empty, all card types are activated). You can choose card types from the right list and put them in the
left list using the button . To deactivate card types, chose them from the left list and press the button

. With the button and the order of the card types in the active list can be changed.

The settings has to be activated using the button Apply. The button Reset discards unsaved
changes.

Note: The reader always looks for the last active card type until a card of the newly activated card
type is detected. E.g. ISO14443A was the only active card type, which is changed to be ISO14443B
only active. Now ISO14443A cards are detected until the first ISO14443B card is presented to the
reader.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 11 of 51 Printed: 05.04.05 09:55

5 ATR generation

The ATR of a contact-less card is artificially mapped to support these cards through PC/SC. The
synchronous cards produce an ATR of T = 0 type, on the other hand the asynchronous cards
introduces both T = 0 and T =1 type.

5.1 Memory Cards (T≠CL)

ATR is generated according to PC/SC Part 3 (Revision 2.0, February 2004) Section 3.1.3.2.3 ATR
and last byte (Byte 16) is Omnikey proprietary card identity.

Initial
character

Header Content

3B 0F FF XX XX XX XX XX XX XX XX XX XX XX XX XX XX

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fixed UID / PUPI / SNR Card
Type

The ATR length is fixed, always 17 bytes.

Byte 0; 0x3B Initial Character

Byte 1; 0x0F, (0 means no 7816 specific information is given, F (15) is the number of bytes in content,
byte 2 – byte 16)

Byte 2; 0xFF, always same.

Byte 3 to Byte 15 (13 bytes) are filled with UID or PUPI or SNR, if it has not 13 bytes, the rests are
filled with 0x00. In case of ISO 14443A -1,2,3(e.g. Mifare) UID is taken UID +1 byte BCC.

Byte 16; is the indication of the card type. The lower nibble tells to which specification the inserted
card complies. The higher nibble tells which card is inserted (according to the names of the card
manufacturer)

5.1.1 Lower nibble of Card Type identifier

Standard Card Type Comments

ISO14443A_123 X1 Part 1,2,3 of ISO 14443A

ISO15693_12 X3 Part 1,2 and InsideContactless Technology (iCLASS)

ISO15693_123 X4 Part 1,2,3 of ISO15693

ISO14443B_12 X5 Part 1,2 of ISO14443B and STmicroelectronics technology

ISO14443B_123 X6 Part 1,2,3, of ISO 14443B

ISO15693_12ICODE1 X8 Part 1,2 and Philips ICODE1

https://www.cardlogix.com/product-tag/omnikey/

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 12 of 51 Printed: 05.04.05 09:55

5.1.2 Higher nibble of Card Type identifier

ISO14443A_123:

Card Card Type

UNKNOWN_CHIP 0X

MIFARE_ST1K 1X

MIFARE_ST4K 2X

MIFARE_ULIT 3X

SLE55R_XXXX 7X

ISO15693_12:

Card Card Type

iCLASS Unknown 8X

iCLASS 2K CX

iCLASS 2KS 9X

iCLASS 16K DX

iCLASS 16KS AX

iCLASS 8x2K EX

iCLASS 8x2KS BX

ISO15693_123:

Card Card Type

SRF55V10P 1X

SRF55V02P 2X

SRF55V10S 3X

SRF55V02S 4X

TAG_IT 9X

LRI512 AX

ICODESLI BX

SRF55XXX CX

TEMPSENS DX

ISO14443B_12:

Card Card Type

SR176 EX

SRIX4K FX

ISO14443B_123:

Card Card Type

AT88RF020 1X

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 13 of 51 Printed: 05.04.05 09:55

AT88SC6416CRF 2X

ISO15693_12ICODE1:

Card Card Type

ICODE1 1X

5.1.3 Examples

ISO 14443 A, Mifare 1K # content: FF + UID + BCC + Rest 00 + CardType:

Initial
character

Header Content

3B 0F FF 32 4D 58 32 15 00 00 00 00 00 00 00 00 11

ISO 14443 B, AT88RF020 # content: FF + PUPI + Rest 00 + CardType:

Initial
character

Header Content

3B 0F FF 00 00 D6 B6 00 00 00 00 00 00 00 00 00 16

5.2 Asynchronous Cards (T=CL)

ATR is generated in such a way to support both T = 0 and T = 1 protocol according to ISO7816-3. The
entry in the ATR is as follows:

Initial
character

T0 TD1 TD2 Historical Bytes LRC

3B 8n 80 01 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx XX

Byte 0 1 2 3 HistByte 0……………HistByte n-1

T0:
Higher nibble 8 means no TA1, TB1, TC1 only TD1 following
Lower nibble n is the number of historical bytes (HistByte 0 to HistByte n-1)

TD1:
Higher nibble 8 means no TA2, TB2, TC2 only TD2 following
Lower nibble 0 means T = 0

TD2:
Higher nibble 0 means no TA3, TB3, TC3, TD3 following
Lower nibble 1 means T = 1

Historical Bytes:

ISO14443A:
The historical bytes from ATS response. ISO14443-4 page 7

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 14 of 51 Printed: 05.04.05 09:55

ISO14443B:
The higher layer response from the ATTRIB response. ISO14443-3 page 36

LRC:
Exclusive-oring of all the bytes T0 to HisBytes n-1.

5.2.1 Examples

Mifare DESfire card:

Initial
character

T0 TD1 TD2 Historical Bytes LRC

3B 81 80 01 80 80

JCOP BIO31 card:

Initial
character

T0 TD1 TD2 Historical Bytes LRC

3B 86 80 01 4A 43 4F 50 33 31 13

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 15 of 51 Printed: 05.04.05 09:55

6 Access asynchronous cards

Asynchronous cards can be accessed using PC/SC ISO 7816 command APDUs. No special API is
needed.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 16 of 51 Printed: 05.04.05 09:55

7 Access synchronous cards (Memory cards)

For the access of synchronous cards we provide the synchronous API. ScardCL is a part of this API,
which deals with contactless memory cards. For the time being, the complete functionality of the
following RF interface cards is supported by the scardsyn.dll shared library:

• Mifare Standard 1K

• Mifare Standard 4K

• Mifare Ultra Light

For adequate understanding of the card's functionality please refer to the Mifare Data sheet.

The following functions are available in the SCardCL module within the library:

• SCardCLGetUID may be used to get the uid or snr of present card in RF-field.

• SCardCLMifareStdAuthent

• SCardCLMifareStdRead

• SCardCLMifareStdWrite

• SCardCLMifareLightWrite

• SCardCLMifareStdIncrementVal

• SCardCLMifareStdDecrementVal

• SCardCLMifareStdRestoreVal

• SCardCLWriteTransmissionKeyToReader

• SCardCLWriteMifareKeyToReader

• SCardCLICCTransmit

The functions SCardCLWriteTransmissionKeyToReader and SCardCLWriteMifareKeyToReader
are for writing the keys to the reader. These functions do not care either the card is present,
connected or not. The other functions are completely card related.

The function SCardCLICCTransmit is the gateway to communicate between the synchronous card
and the application.

Currently it supports only the iCLASS card.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 17 of 51 Printed: 05.04.05 09:55

7.1 Overview

The functionality for Mifare cards, implemented in CM5121 can be classified as follows:

7.2 Functions

In the following chapters, the functions of ScardCL are described.

7.2.1 SCardCLGetUID

OKERR ENTRY SCardCLGetUID
 (
 IN SCARDHANDLE ulHandleCard,
 IN OUT PUCHAR pucUID,
 IN ULONG ulUIDBufLen,
 IN OUT PULONG pulnByteUID
);

The function SCardCLGetUID gives the UID and number of bytes in the UID of the contactless card
present in the rf field. For cards do not following the T = CL (no ATS), the ATR field also filled with the
UID. UID starts from the 4th byte of ATR. One must know the number of valid bytes of UID for the
specific card.

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle provided from the "smart card resource manager" after
connecting the card (SCardConnect)

pucUID Unique IDentifier of the contactless card for ISO 14443A card, the
last byte is BCC (UID CLn check byte, calculated as exclusive-or
over the 4 previous bytes), actual UID will be without the last byte.

ulUIDBufLen The length of the ucUID buffer

pulnByteUID Number of bytes in the UID

Key writing Authentication Memory Operation

By key number

By key

Read

Write

Increment

Decrement

Restore

Writing Trans-
mission Key

Writing Mifare
Key

Plain

Secured

Plain

Secured

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 18 of 51 Printed: 05.04.05 09:55

7.2.2 SCardCLMifareLightWrite

OKERR ENTRY SCardCLMifareLightWrite
 (
 IN SCARDHANDLE ulHandleCard,
 IN ULONG ulMifareBlockNr,
 IN PUCHAR pucMifareDataWrite,
 IN ULONG ulMifareDataWriteBufLen
);

The function SCardCLMifareLightWrite writes the block of the Mifare Ultra Light card only, it does not
need authentication. Four bytes data can be written to the specified block. Block 0, 1 and first two
bytes of block 2 cannot be written. Other two bytes of block 2 and block 3 needs extra care, as they
are OTP and LOCK bytes.

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle to a Mifare ultra Light card, provided from the "smart card
resource manager" after connecting the card (SCardConnect)

ulMifareBlockNr The Mifare block number which is to be written, it is 2 to 15.

pucMifareDataWrite A pointer to the 4 byte buffer, which data to be written

ulMifareDataWriteBufLen The length of the data buffer, it must be 4

7.2.3 SCardCLMifareStdAuthent

OKERR ENTRY SCardCLMifareStdAuthent
 (
 IN SCARDHANDLE ulHandleCard,
 IN ULONG ulMifareBlockNr,
 IN UCHAR ucMifareAuthMode,
 IN UCHAR ucMifareAccessType,
 IN UCHAR ucMifareKeyNr,
 IN PUCHAR pucMifareKey,
 IN ULONG ulMifareKeyLen
);

The function SCardCLMifareStdAuthent authenticates the block of Mifare 1K or Mifare 4K Cards. The
authentication can be done in two ways either supplying the key or the Key number which is already in
the reader. The ways can be selected by using ucMifareAccessType. If it is MIFARE_KEY_INPUT
then ucMifareKeyNr has no role, on the other hand if it is MIFARE_KEYNR_INPUT then
pucMifareKey and ulMifareKeyLen have no effect.

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle to a Mifare card, provided from the "smart card resource
manager" after connecting the card (SCardConnect)

ulMifareBlockNr The block number which is to be authenticated, for Mifare 1K it will
be 0 to 63, and for Mifare 4K it will be 0 to 255.

ucMifareAuthMode This tells the reader the key you want to use is Mifare Key A or
Mifare Key B, For Key A this parameter must be set to
MIFARE_AUTHENT1A and for Key B to MIFARE_AUTHENT1B

ucMifareAccessType The ways of supplying key or providing the key number

ucMifareKeyNr If key number is to be supplied, then valid key number, make sure
th t th k h b itt i th ifi d K N i f ti

https://www.cardlogix.com/product/mifare-ultralight/
https://www.cardlogix.com/product/mifare-classic-1k-4uid-nxp-2/
https://www.cardlogix.com/product/mifare-classic-ev1-4k-7uid/

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 19 of 51 Printed: 05.04.05 09:55

that the key has been written in the specified KeyNr using function
SCardCLWriteMifareStdKeyToRC

pucMifareKey A pointer to the six byte Mifare key, if intended to supply key

ulMifareKeyLen If key is supplying then length of the key, it is always 6

7.2.4 SCardCLMifareStdDecrementVal

OKERR ENTRY SCardCLMifareStdDecrementVal
 (
 IN SCARDHANDLE ulHandleCard,
 IN ULONG ulMifareBlockNr,
 IN PUCHAR pucMifareDecrementValue,
 IN ULONG ulMifareDecrementValueBufLen
);

The function SCardCLMifareStdIncrementVal decrements the value block's content of Mifare 1K and
Mifare 4K cards. The block must be authenticated by calling the function SCardCLMifareStdAuthent
prior to calling SCardCLMifareStdDecrementVal, if the block is not authenticated it will return
ERROR_ACCESS_DENIED. Sector trailer block and block 0 cannot be Decremented. If the block is
not Value block the decrement will also fail. One can be sure of the block either value block or not by
simply reading the block and checking the data storage according to Mifare Value Block definition,(
Please see the Mifare Data Sheet).

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 20 of 51 Printed: 05.04.05 09:55

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle to a Mifare 1K or Mifare 4K card, provided from the
"smart card resource manager" after connecting the card
(SCardConnect)

ulMifareBlockNr he Mifare value block number which is to be decremented.
for Mifare 1K it can be 1 to 63 and for Mifare 4K it can be 1
to 255, except the sector trailer block and unless it is not
value block.

pucMifareDecrementValue A pointer to the 4 byte buffer, by which the content of the
block will be decremented.

ulMifareDecrementValueBufLe
n

 Size of the Buffer, it must be 4.

7.2.5 SCardCLMifareStdIncrementVal

OKERR ENTRY SCardCLMifareStdIncrementVal
 (
 IN SCARDHANDLE ulHandleCard,
 IN ULONG ulMifareBlockNr,
 IN PUCHAR pucMifareIncrementValue,
 IN ULONG ulMifareIncrementValueBufLen
);

The function SCardCLMifareStdIncrementVal increments the value block's content of Mifare 1K and
Mifare 4K cards. The block must be authenticated by calling the function SCardCLMifareStdAuthent
prior to calling SCardCLMifareStdIncrementVal, if the block is not authenticated it will return
ERROR_ACCESS_DENIED. Sector trailer block and block 0 cannot be Incremented. If the block is
not value block the increment will also fail and card will leave current state, should be reconnected the
card. One can be sure of the block either value block or not by simply reading the block and checking
the data storage according to Mifare Value Block definition,(Please see the Mifare Data Sheet).

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle to a Mifare 1K or Mifare 4K card, provided from the
"smart card resource manager" after connecting the card
(SCardConnect)

ulMifareBlockNr The Mifare value block number which is to be incremented.
for Mifare 1K it can be 1 to 63 and for Mifare 4K it can be 1 to
255, except the sector trailer block and unless it is not value
block.

pucMifareIncrementValue A pointer to the four byte buffer by which the value will be
incremented

ulMifareIncrementValueBufLe
n

 The number of byte in the buffer, it must be 4

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 21 of 51 Printed: 05.04.05 09:55

7.2.6 SCardCLMifareStdRead

OKERR ENTRY SCardCLMifareStdRead
 (
 IN SCARDHANDLE ulHandleCard,
 IN ULONG ulMifareBlockNr,
 IN OUT PUCHAR pucMifareDataRead,
 IN ULONG ulMifareDataReadBufLen,
 IN OUT PULONG pulMifareNumOfDataRead
);

The function SCardCLMifareStdRead reads the block of Mifare 1K,Mifare 4K or Mifare Ultra Light
Cards. If the card is Mifare Ultra Light, it does not need authentication, otherwise it must be
authenticated by calling the function SCardCLMifareStdAuthent prior to calling
SCardCLMifareStdRead, if the block is not authenticated it will return ERROR_ACCESS_DENIED. If
the operation is successful, sixteen byte data will be available in the pucMifareDataRead buffer. In
case of Mifare Ultra light the sixteen byte data will be from four blocks starting from the
ulMifareBlockNr.A roll back is implemented e.g. if ulMifareBlockNr is 14, the contents of 14, 15, 0, and
1 is read. The Mifare Ultra Light has 16 blocks (0 to 15).

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle to a Mifare card, provided from the "smart card resource
manager" after connecting the card (SCardConnect)

ulMifareBlockNr The Mifare block number which is to be read, for Mifare 1K it is 0
to 63, for Mifare 4K it is 0 to 255 and for Mifare Ultra Light it is 0 to
15.

pucMifareDataRead Pointer to the buffer allocated for data reading from the card

ulMifareDataReadBufLen The size of the buffer, must be 16 or higher

pulMifareNumOfDataRea
d

 It will return the number of bytes received from the card, it will be
always 16 if the reading is successful

7.2.7 SCardCLMifareStdRestoreVal

OKERR ENTRY SCardCLMifareStdRestoreVal
 (
 IN SCARDHANDLE ulHandleCard,
 IN ULONG ulMifareOldBlockNr,
 IN ULONG ulMifareNewBlockNr,
 IN BOOLEAN fMifareSameSector,
 IN UCHAR ucMifareAuthModeForNewBlock,
 IN UCHAR ucMifareAccessTypeForNewBlock,
 IN UCHAR ucMifareKeyNrForNewBlock,
 IN PUCHAR pucMifareKeyForNewBlock,
 IN ULONG ulMifareKeyLenForNewBlock
);

The function SCardCLMifareStdRestoreVal restores the data of one value block to another value
block. If one of them are not value block, then it will fail. One can be sure by reading both blocks and
checking the data storage according to Mifare Value Block definition,(Please see the Mifare Data
Sheet) before calling this function. Just before calling function SCardCLMifareStdRestoreVal the
source block ulMifareOldBlockNr must be authenticated, otherwise it will return
ERROR_ACCESS_DENIED. If source and destination block both are in the same sector, then set
fMifareSameSector TRUE otherwise FALSE, for standard value block configuration. If the Destination

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 22 of 51 Printed: 05.04.05 09:55

block is in other sector, by setting the fMifareSameSector FALSE, the succeeding parameters has to
be provided.

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle to a Mifare 1K or Mifare 4K card, provided from the
"smart card resource manager" after connecting the card
(SCardConnect)

ulMifareOldBlockNr The source block number from where values will be
transferred

ulMifareNewBlockNr The destination block number to where the values will be
taken

fMifareSameSector Identify if the source and destination block both are in the
same sector or not, if in the same sector set TRUE, else
FALSE

ucMifareAuthModeForNewBlock If different sector, the authentication mode for new sector,
If Key A is used then MIFARE_AUTHENT1A, if Key B then
MIFARE_AUTHENT1B

ucMifareAccessTypeForNewBloc
k

 The ways of supplying key information, providing the key
or Key number for the destination block

ucMifareKeyNrForNewBlock If key number is to be supplied, then valid key number for
destination block, Make sure that the key has been written
in the specified KeyNr using function
SCardCLWriteMifareStdKeyToRC

pucMifareKeyForNewBlock A pointer to the six byte mifare key, if intended to supply
key

ulMifareKeyLenForNewBlock If key is supplying then length of the key, it is always 6

7.2.8 SCardCLMifareStdWrite

OKERR ENTRY SCardCLMifareStdWrite
 (
 IN SCARDHANDLE ulHandleCard,
 IN ULONG ulMifareBlockNr,
 IN PUCHAR pucMifareDataWrite,
 IN ULONG ulMifareDataWriteBufLen
);

The function SCardCLMifareStdWrite Writes the block of the Mifare card If the card is Mifare Ultra
Light, it does not need authentication, otherwise it must be authenticated by calling the function
SCardCLMifareStdAuthent prior to calling SCardCLMifareStdWrite, if the block is not authenticated it
will return ERROR_ACCESS_DENIED. For Mifare 1K and Mifare 4K block 0 cannot be written. To
write a sector trailer please take extra care, incorrect configuration can make permanent loss of the
blocks. If the mod(ulMifareBlockNr + 1, 4) is 0, then ulMifareBlockNr is a sector trailer. For Mifare 4k
this could be different for higher block numbers. Please see the Mifare Data Sheet.

If the card is Mifare Ultra light then block 0, 1 and first two bytes of block 2 cannot be written. Other
two bytes of block 2 and block 3 needs extra care as they are OTP and LOCK bytes. Although 16
bytes is supplied to the cards, only first four bytes will be written in the given ulMifareBlockNr.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 23 of 51 Printed: 05.04.05 09:55

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle to a Mifare card, provided from the "smart card resource
manager" after connecting the card (SCardConnect)

ulMifareBlockNr The Mifare block number which is to be written, for Mifare 1K it is 1
to 63, for Mifare 4K it is 1 to 255 and for Mifare Ultra Light it is 2 to
15.

pucMifareDataWrite The pointer to a 16 byte buffer, the data to be written

ulMifareDataWriteBufLe
n

 The length of the data buffer, it must be 16

7.2.9 SCardCLWriteMifareKeyToReader

OKERR ENTRY SCardCLWriteMifareKeyToReader
 (
 IN SCARDHANDLE ulHandleCard,
 IN SCARDCONTEXT hContext,
 IN PCHAR pcCardReader,
 IN ULONG ulMifareKeyNr,
 IN ULONG ulMifareKeyLen,
 IN PUCHAR pucMifareKey,
 IN BOOLEAN fSecuredTransmission,
 IN ULONG ulTransmissionKeyNr
);

The function SCardCLWriteMifareKeyToReader writes the Mifare keys in the reader. These keys are
rewrite able but cannot be read back. These keys will be used for Mifare Authentication, if one intends
to do so. Maximum 32 keys (ulMifareKeyNr 0 to 31)can be stored. In order to write without connecting
card, ulHandleCard is set to invalid e.g. 0x00000000 or 0xFFFFFFFF, and the user must provide the
hContex and pcCardReader. If valid ulHandleCard is provided, hContext and pcCardReader have no
role to play, card is connected considered.

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle, provided from the "smart card resource manager" after
connecting the card (SCardConnect)

hContext current context handle, received from SCardEstablishContext

pcCardReader ptr to a str holding the name of the selected reader

ulMifareKeyNr Identity of the key (it must be any value from 0 to 31, maximum 32
keys can be stored

ulMifareKeyLen Length of the key which will be written, must be 6 if not secured, if
secured it must be 8

pucMifareKey if not seucred Six-byte Mifare key, if secured then 8 byte 3-DES
encrypted key

fSecuredTransmission The way of transmission of MifareKey from host pc to reader,
secured or plain

ulTransmissionKeyNr If the transmission is secured, then define the Transmission key
Number which will be for encryption and decryption of MifareKey,
this must be 0 or 1

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 24 of 51 Printed: 05.04.05 09:55

7.2.10 SCardCLWriteTransmissionKeyToReader

OKERR ENTRY SCardCLWriteTransmissionKeyToReader
 (
 IN SCARDHANDLE ulHandleCard,
 IN SCARDCONTEXT hContext,
 IN PCHAR pcCardReader,
 IN ULONG ulTransmissionKeyNr,
 IN ULONG ulTransmissionKeyLen,
 IN PUCHAR pucTransmissionKey,
 IN BOOLEAN fSecuredTransmission,
 IN ULONG ulTransTransmissionKeyNr
);

The function SCardCLWriteTransmissionKeyToReader writes the Transmission keys in the reader.
These keys are rewriteable.These keys will be used for secured key transmission from reader to host,
if you set fSecuredTransmission of SCardCLWriteMifareKeyToReader TRUE. One can also make
secured these TransmissionKey transmission by setting fSecuredTransmission to TRUE here. In this
case One has to supply the encrypted TransmissionKey and the number of the TransmissionKey,
which has been used for this encryption. In order to write without connecting card, ulHandleCard is set
to invalid e.g. 0x00000000 or 0xFFFFFFFF, and the user must provide the hContex and
pcCardReader. If valid ulHandleCard is provided, hContext and pcCardReader have no role to play,
card is connected considered.

The following parameters need to be provided:

Parameter Type Description

ulHandleCard Handle, provided from the "smart card resource manager" after
connecting the card (SCardConnect)

hContext current context handle, received from SCardEstablishContext

pcCardReader ptr to a str holding the name of the selected reader

ulTransmissionKeyNr The key number which will be written, the number must be from 0
or 1

ulTransmissionKeyLen The length of the Transmission key, must be 16

pucTransmissionKey 16-byte key, if secured, it must be encrypted with other key

fSecuredTransmission If the TransmissionKey transmission is intended to be secured,
place TRUE, for plain place FALSE

ulTransTransmissionKeyN
r

 The TransmissionKeyNr, which has been used to encrypt the
TransmissionKey going to write. The valid value is 0 or 1.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 25 of 51 Printed: 05.04.05 09:55

7.2.11 SCardCLICCTransmit

There is only one function responsible for communication between the storage card and application in
both modes standard and secured.

OKERR ENTRY SCardCLICCTransmit (

 IN SCARDHANDLE ulHandleCard,

 IN PUCHAR pucSendData,

 IN ULONG ulSendDataBufLen,

 IN OUT PUCHAR pucReceivedData,

 IN OUT PULONG pulReceivedDataBufLen);

pucSendData: Pointer to the buffer of data send to reader, this data buffer will according to table 7-1.

pucReceivedData: Pointer to the buffer of response data according to table 7-2.

Table 7-1: Data gram, application to reader

CLA INS P1 P2 Lc Send data gram*** Le

0x8X XX XX XX XX xxxxxxxxxxxxxxxxxxxxxxxxxx (Lc bytes) xx

Table 7-2: Data gram, reader to application

Response data gram*** SW2 SW1

xxxxxxx xx xx

*** In the secured communication mode, this Send data gram and Response data gram will be
in Omnikey propritary format. For Standard mode it is explained in the following chapter.

Table 7-3: Common status codes

 SW1 SW2 Meaning
No Error '90' '00' Success

'67' '00' Wrong length

'68' '00' Class byte is not correct

'6A' '81' INS not supported

Error

'6B' '00' Wrong parameter P1-P2

The error code defined in Table 7-3 is valid for all the commands. Moreover the command specific
error has been introduced in every command sections.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 26 of 51 Printed: 05.04.05 09:55

8 Standard Communication with iCLASS Cards

The Synchronous API function SCardCLICCTransmit is called to communicate with the iCLASS cards.

This type of communication does not provide any authentication, confidentiality and integrity between
the host and reader. The security in the reader to card communication as well as the card data
integrity and confidentiality depend on the card technology.

8.1 APDU structure for Standard communication

The supported APDU is standard ISO7816-4 APDU.

Table 8-1: APDU application to reader

CLA INS P1 P2 Lc Data in Le

0x80 XX XX XX XX Xxxxxxxxxxxxxxxxxxxxxxxxxxx xx

Table 8-2: APDU, reader to application

Data out SW2 SW1

Xxxxxxx xx xx

The error code defined in Table 7-3 is valid for all the commands. Moreover the command specific
error has been introduced in every command sections.

Please not that, APDU application to reader is the pucSendData and the APDU reader to application
will be in the pucReceivedData of the synchronous function SCardCLICCTransmit.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 27 of 51 Printed: 05.04.05 09:55

8.2 Supported INS in the standard communication

The following instruction (INS) commands are supported by CardMan 5121 in the standard
communication mode.

Table 8-3: Instructions

Instruction Description

0xA6 Select Page

0x82 Load Key

0xC4 GetKeyInfo

0x88 Authenticate

0xB0 Read

0xD6 Update

8.2.1 Select Page

For the iCLASS 2x8KS type card the required page of the card must be selected at first, if it
is other than page 0. For other type of cards this command is not necessary to perform, but
could be performed with the correct combination of P1, P2, Lc, Le to retrieve the supported
information according to P2.

Table 8-4: Select page command APDU

Command Class INS P1 P2 Lc Data in Le

Select page 0x80 0xA6 xx xx xx xxxx xx

Table 8-5: Data Out of Select page command

 Data Out

 xx SW1 SW2

Lc: Absent for encoding Nc = 0, present for encoding Nc > 0

Data in: Absent or Page number (according to P1)

Le: If requested data according to P2 and Le = 0 then Data Out will be the requested data field, if
Le>0, Ne data bytes will be returned. If Le field is absent no data byte will be returned.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 28 of 51 Printed: 05.04.05 09:55

Table 8-6: P1 of Select page Command

b7 b6 b5 b4 b3 b2 b1 b0 Meaning Command
data field

0 0 0 0 0 0 0 0 Select the only page of iCLASS 2KS or
single page of 16KS

Absent

0 0 0 0 0 0 0 1 Select page of multi-page iCLASS 16KS
(8x2KS)

Page number
0 to 7

Other values are RFU

Table 8-7: P2 of Select page Command

b7 b6 b5 b4 b3 b2 b1 b0 Meaning

0 0 0 0 0 0 0 0 Return nothing

0 0 0 0 0 1 0 0 Return Card serial number

0 0 0 0 1 0 0 0 Return configuration block data

0 0 0 0 1 1 0 0 Return Application issuer data

Other values are RFU

Table 8-8: SW1SW2 for Select page command

 SW1 SW2 Meaning

Warning 62 82 Le > requested data, available data is returned

62 83 Requested page number does not exist Error

6C XX Wrong length Le < requested data, XX returns
the number of data available

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 29 of 51 Printed: 05.04.05 09:55

8.2.2 Load Key

Load Key command loads the KIAMC in the reader memory. If ‘Authenticate’ command wants to use the
KIAMC, it must be in the reader key container or in the non-volatile memory. The volatile key may be
used only for the succeeding Authentication. Right now only one inside application master key (KIAMC)
can be stored in the reader.

Table 8-9: Load Key command APDU

Command Class INS P1 P2 Lc Data in Le

Load Key 0x80 0x82 Key Structure

Key number Key Length Key -

Table 8-10: Data Out

 Data Out

- SW1 SW2

Table 8-11: Definition of P1 of Load Key command APDU

b7 b6 b5 b4 b3 b2 b1 b0 Description

x 0 card key, 1 Reader key

 X 0:Plain transmission, 1:Secured transmission

 x If 0, the keys are loaded in the IFDs volatile memory

If 1, the keys are loaded in the IFDs nonvolatile
memory.

 x RFU (set 0, else return error)

 0000 Not Valid (set all 0, else return error)

Note: As right now, the intension is to allow loading of KIAMC only, so b7 must be set to 0 and
b6 must be set to 0 as no encryption of key only

P2 (Key Number):

Please use the key Number according to the following table.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 30 of 51 Printed: 05.04.05 09:55

Table 8-12: Definition of P2 of Load Key command APDU

Key Number. Comments Key
Length

Key Type Memory location

0x00 to 0x1F are for all 6-byte Mifare key

0x00 to 0x1F Mifare Key 0 to Mifare Key
31

6 bytes Card Key Non volatile
memory

0x20 to 0x7F are for all 8-byte key

0x20 KIAMC 8 bytes Card Key Non volatile
memory

0x21 KMDC 8 bytes Card Key Non volatile
memory

0x22 KMDO (This key is internally
used)

8 bytes Card Key Non volatile
memory

0x80 to 0xAF are for all 16-byte key.

0x80 Host Key 0 (KCUR) 16 bytes Reader Key Non volatile
memory

0x81 Host Key 1 (KCUW) 16 bytes Reader Key Non volatile
memory

0x82 KENC 16 bytes Card Key Non volatile
memory

0xB0 to 0xCF are 24- byte key

0xD0 to 0xDF are 32-Byte key

0xF0 to 0xFF are volatile key

0xF0 Any application key 8 bytes Card Key Volatile memory

The key number inherently fixes the key length. That means Key 0x00 will be always 6 bytes, Key
0x20 always 8 bytes and so on.

Please note for iCLASS card other than HID Application only one non volatile key KIAMC(0x20)
and one volatile key (0xF0) are supported.

Right now only valid combinations are

P1 0x20, P2 0x20 or P1 0x00, P2 0xF0 and always Lc = 0x08 and 8 byte data

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 31 of 51 Printed: 05.04.05 09:55

The following table introduces some examples of SW1SW2 and their meaning.

Table 8-13: Load Keys command error codes

 SW1 SW2 Meaning
Warning '63' '00'

No information is given

'82' Card key not supported

'83' Reader key not supported

'84' Plain transmission not supported

'85' Secured transmission not supported

'86' Volatile memory is not available

'87' Non volatile memory is not available

'88' Key number not valid

Error

'63'

'89' Key length is not correct

8.2.3 GetKeyInfo

Presents the information of the requested key place of the reader key container

Table 8-14: GetKeyInfo Command

Command Class INS P1 P2 Lc Data in Le

GetKeyInfo 0x80 0xC4 xx 0x00 0x01 xx xx

P1:

0x00: The information of the key resides in non-volatile memory

0x01: The information of the key resides in the volatile memory

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 32 of 51 Printed: 05.04.05 09:55

Data in:

The key place holder (The IFD may provide 0 to 255 Key place holder) according to the follwoing
table.

Table 8-15: iCLASS Key container

Le:

If Le = 0x00 then also 2 information bytes are returned if Le =0x01 error is returned if Le > 0x02 only
two bytes are returned. If Le absent error is returned.

Table 8-16: GetKeyInfo Command Response

 Data Out

xxxx SW1 SW2

Key Name Key number according to table 7-12 Key place
Mifare Key

(von-
volatile)

Mifare Key 0 –31, there will be no key information
available for Key place 0. This is reserved for 6
byte all 32 Mifare keys

0x00 - 0x1F

Key Name These keys are non volatile Key place (KP)

KCUR Key number 0x80
0x20

KCUW Key number 0x81
0x21

KENC Key number 0x82 0x22

KIAMC Key number 0x20 0x23
KMDO Key number 0x22 0x24
KMDC Key number 0x21 0x25

Key Key place (KP)
Volatile
Application
key (KIAMC)

Key number 0xF0 0x26

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 33 of 51 Printed: 05.04.05 09:55

Reader Response will be 2 Bytes according to the following table:

Table 8-17: Key Information Byte

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

RFU Key
statu

s

Access
Type

Key Number according to table 8-12

b10 : If it is 0, the location is occupied and the following bits are valid. If it is set to 1 key place
is empty b0 to b7 bits are not valid.

Table 8-18: Access option

b9 b8 Access Option
0 0 Can be loaded in any type of transmission e.g. plain or

secured

0 1 Allowed to load only in Omnikey proprietary secured
mode

1 0 Loading is never allowed

1 1 RFU

Table 8-19: GetKeyInfo command error codes

 SW1 SW2 Meaning
‘62’ ‘82’ Le > requested data, available data is

returned
Warning

'63' '00'

No information is available

62 83 Requested Key place does not exist

6C XX Wrong length Le < requested data, XX
returns the number of data available

Error

'69' '82' Security status not satisfied

8.2.4 Authenticate command:

Authenticate command authenticates the application of the selected page.

Table 8-20: Authentication command APDU

Command Class INS P1 P2 Lc Data in Le
Authenticate 0x80 0x88 Key Type Key Nr Address

Length

Address. -

Table 8-21: Data out of Authenticate command

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 34 of 51 Printed: 05.04.05 09:55

 Data Out

 - SW1 SW2

P1:

Table 8-22: Key Type

Value (b7 - b0) Description

0x00 Inside Contactless Kd

0x01 Inside Contactless Kc

0x60 Mifare Key A

0x61 Mifare Key B

0xFF Key Type unknown or not necessary

Other values RFU

Key Nr.:
The card key number, which will be used for this authentication according to table 8-12

Lc: As the page has been selected in the select command and the memory authentication of iCLASS
card does not need any address, so Lc and Data in must be absent. In case of other card it can be
maximum 2 bytes.

Data in : As Lc Absent, Data in must be absent.

Right now only valid combinations are

P1 0x00, or P1 0x01, P2 0x20 or P2 0xF0, Lc , data in, Le must be empty.

Table 8-23: Authentication command error codes

 SW1 SW2 Meaning
Warning '63' '00'

No information is given

'82' Security status not satisfied

'83' Authentication cannot be done

'84' Reference key not useable

 '69'

'88' Key number not valid

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 35 of 51 Printed: 05.04.05 09:55

8.2.5 Read command:

Read command reads the data from the given block address.

Table 8-24: Read command APDU

Command Class INS P1 P2 Lc Data in Le

Read 0x80 0xB0 Block Nr
MSB

Block Nr
LSB

--- -- xx

Table 8-25: Read Command Response

 Data Out

Card response SW1 SW2

For iCLASS card, please set P1 as 0x00 and P2 as the block number

Le:

For iCLASS card the Le has the following meaning

If Le is 0, 8 bytes are returned starting from block address offset.

If 0<Le ≤ 32, Le number of bytes are returned starting from block address offset.

If Le >32, 32 bytes are returned starting from block address offset.

Table 8-26: Read Binary error codes

 SW1 SW2 Meaning
Warning '62' '81'

'82'

Part of returned data may be corrupted

End of file reached before reading Ne bytes

'69' '81' '82'
‘86’

Command incompatible
Security status not satisfied
Command not allowed

'6A' '81' '82' Function not supported
File not found / Addressed block or byte
does not exist

Error

'6C' 'XX' Wrong length (wrong number Ne; 'XX'
encodes the exact number)

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 36 of 51 Printed: 05.04.05 09:55

8.2.6 Update command:

Update command updates the given block number with the given data.

Table 8-27: Update command APDU

Command Class INS P1 P2 Lc Data in Le

Update 0x80 0xD6 Block Nr.
MSB

Block Nr.
LSB

xx xxxx --

Table 8-28: Update Response

 Data Out

 Data SW1 SW2

For iCLASS please set P1 as 0x00 and P2 as the block number

Lc:

For iCLASS, if Lc ≠ 8, error code is returned, as only 8 bytes can be updated once.

Table 8-29: Update Binary error codes

 SW1 SW2 Meaning

Warning '62' '82' End of file reached before writing Lc bytes.

'65' '81' Memory failure (unsuccessful writing).

'69' '81'

'82'

‘86’

Command incompatible.

Security status not satisfied.

Command not allowed.

Error

'6A' '81'
'82'

Function not supported.

File not found / Addressed block or byte does not exist.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 37 of 51 Printed: 05.04.05 09:55

8.3 Communication flow diagram for iCLASS card

8.3.1 Some Remarks on the communication structure:

1. To establish Context please call the following PC/SC function
 LONG SCardEstablishContext(
 IN DWORD dwScope,
 IN LPCVOID pvReserved1,
 IN LPCVOID pvReserved2,
 OUT LPSCARDCONTEXT phContext);

Establish Context

Connect Card

Select Page

Load Key

Authenticate Application

Yes

Read/Update

Further
Read/Update

No

Disconnect Card

Same
Application

Yes

Same Page

No

Yes

No

1

2

3

4

5

6

7

8

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 38 of 51 Printed: 05.04.05 09:55

2. Here if necessary the status of the reader can be checked for card insertion, removal or
availability of the CardMan 5121 by calling the following PC/SC function:

 LONG SCardGetStatusChange(
 IN SCARDCONTEXT hContext,
 IN DWORD dwTimeout,
 IN OUT LPSCARD_READERSTATE rgReaderStates,
 IN DWORD cReaders);

 To see check all the connected readers the following PC/SC function may be called:
 LONG SCardListReaders(
 IN SCARDCONTEXT hContext,
 IN LPCTSTR mszGroups,
 OUT LPTSTR mszReaders,
 IN OUT LPDWORD pcchReaders);

3. A card must be connect to communicate with that card by calling the following PC/SC
function:

 LONG SCardConnect(
 IN SCARDCONTEXT hContext,
 IN LPCTSTR szReader,
 IN DWORD dwShareMode,
 IN DWORD dwPreferredProtocols,
 OUT LPSCARDHANDLE phCard,
 OUT LPDWORD pdwActiveProtocol);

 Please note that, currently for memory card e.g. iCLASS only
T=0, protocol is supported

Step 4, 5, 6, 7 can be accomplished by calling the following synchronous API function with correct
command specific APDU:

OKERR ENTRY SCardCLICCTransmit (
 IN SCARDHANDLE ulHandleCard,
 IN PUCHAR pucSendData,
 IN ULONG ulSendDataBufLen,
 IN OUT PUCHAR pucReceivedData,
 IN OUT PULONG pulReceivedDataBufLen);

8. It is not mandatory to disconnect the card after completion of all the transactions but
preferred. A connected card can be disconnected by calling the following PC/SC function:

 LONG SCardDisconnect(
 IN SCARDHANDLE hCard,
 IN DWORD dwDisposition);

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 39 of 51 Printed: 05.04.05 09:55

9 Inter industry commands for synchronous cards

Omnikey prefers some global inter-industry commands for the synchronous cards, which will give the
user possibility to work with only the PC/SC interface not to have some proprietary API like the
synchronous API currently we provide. In this issue, we have submitted a proposal on unique Inter-
industry commands to the PC/SC workgroup members. After the official acceptance and publication,
these commands will be explained here.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 40 of 51 Printed: 05.04.05 09:55

10 Mifare Security Support

This security is only valid for communication with the Mifare standard card.

There are two episodes in the security feature.

Reader and Card: The security in the air interface between the card and the reader.

Reader and Host: The security in the transmission cable between the reader and the host.

10.1 Reader to Card secured transmission

The different cards are using different authentication schemes for secured transmission of data
between the reader and the card. Most of the cases the mutual authentication is based on a key
known by the card and the reader. Some times the data is transmitted between the chips and the
reader is encrypted with the card manufacturer’s defined technology. This security completely chips
dependent. As example DESFire can use DES Encryption.

10.2 Host to Reader secured transmission

For the best use of the security feature provided by the card, the application must write the key in the
reader before using it. Now while the key is written to the reader, could be sniffed from the USB
transmission line and can produce a security hole and results the card manufacturer authentication
scheme useless. Therefore CardMan 5121 is providing a cryptographic technology for transmission of
the secured data from the host to the reader.

Application

Synchronous API

Driver

Host PC

USB cable

FirmwareReader

Figure 7: Scope of Security feature - Omnikey Cryptography is proposed for red dashed path

This approach introduces two types of keys:

Card Key: These are the card specific key (e.g. Mifare key, iClass Debit or credit key) used to
authenticate the cards. The current version supports only the Mifare Key. If not mentioned Mifare Key
term used any where will be treated as one Card Key. There are 6-byte long 32 number of non-volatile
Mifare Keys can be written to the reader. For the authentication of standard Mifare block, one can use
the specific key number, Please see the SCardCLMifareStdAuthent functions

https://www.cardlogix.com/product/mifare-desfire-ev1-8k/

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 41 of 51 Printed: 05.04.05 09:55

Transmission Key: This key may be used to secure the transmission of Card Key . There are two 16
bytes long non volatile Transmission keys.

Now the functionality and writing of the keys are as follows:

There could be two types of CardMan 5121: one with a default Transmission key and other without
any default Transmission key. For the reader without any default key please write one of the two
transmission keys (Transmission key 0 or 1) in plain mode using
SCardCLWriteTransmissionKeyToReader. Now one can encrypt a 16-byte long key with the
previously written transmission key using standard 3-DES and can write in secured mode. If there is a
default key in the reader it will be always as Transmission Key 0, one can use this key as a previously
written key. In that case Omnikey will provide the default key in a secured way on request. Writing of
the transmission key is always possible. Now there are Transmission keys in the reader, The reader is
ready for the secured transmission of Card Key.

As mentioned before current versions support only writing Mifare key. To write Mifare Key in a
secured way encrypt the Mifare Key with one of the Transmission Key using standard 3-DES. As
Mifare Key is 6 byte long, add two bytes padding of zero. Now take the secured option in
SCardCLWriteMifareKeyToReader TRUE and provide the Transmission Key number used for the
encryption.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 42 of 51 Printed: 05.04.05 09:55

11 Performance

11.1 Supported baud rates

The current version of the reader is capable of supporting the following transmission speed:

ISO14443A:

• 106 kbits/sec

• 212 kbits/sec

• 424 kbits/sce

ISO14443B:

• 106 kbits/sec

ISO15693:

• Low: 6.62 kbits/sec

• High:26. kbits/sec

Note: The higher baud rates e.g. 847 kbits/sec for ISO14443A, and higher baud rate ISO14443B type
chips will be supported very soon.

11.2 DESFire Working speed from an example application

Test Procedure:

The test has been performed under the following entity:

• A DESFire v 0.5 sample card.

• ISO 7816 wrapped APDU

• A VC++ application run under Windows 2000 in a P III 500 MHz PC

• Omnikey CardMan 5121 Reader

• Driver Version 1.26

• Firmware Version 101

• Air interface at 424 kbits/sec

Test Result:

Reading:

1024 Bytes took 130 mSec, i.e. @61.54 kbps

2048 Bytes took 250 mSec, i.e. @ 65.54kbps

Writing:

1034 Bytes took 290 mSec, i.e. @ 27.85 Kbps

2048 Bytes took 531 mSec, i.e. @ 30.86 kbps

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 43 of 51 Printed: 05.04.05 09:55

Note: Currently the readers allow maximum 47 bytes writing using the ISO7816 wrapped APDU for
DESFire card at a time, on the other hand Reading is possible to maximum 255 bytes.

Example APDU for Write command:

Send:

CLA INS P1 P2 Lc FileNo Offset Length Data upto 47
bytes

Le

90 3D 00 00 xx xx xxxxxx xxxxxx xxxxxxx…xxx
x

00

Receive:

SW1 SW2 Meaning

91 00 Success

91 xx Error: According to DESFire data sheet

Example APDU for Read command:

Send:

CLA INS P1 P2 Lc FileNo Offset Length Le

90 BD 00 00 07 XX XXXXXX LLLLLL
(Maximum

FF)

00

Receive:

LL-byte Data SW1 SW2

SW1 SW2 Meaning

91 00 Success

91 xx Error: According to DESFire data sheet

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 44 of 51 Printed: 05.04.05 09:55

12 Application Programming

12.1 Sample project

A complete sample in C++ can be found in Samples\contactlessdemovc of the Synchronous API
installation. The same sample in Visual Basic can be found in Samples\contactlessdemovb.

12.1.1 Overview

Figure 8: Screenshot of contactlessdemovc

In the list box in the top-left corner of the window you can select the reader to use. When a card is
inserted the ATR, UID and Card Name will be shown in the text fields below. The functions in the
group box Reader Related functions can be used with or without card in the field. In the center of the
window are some Mifare Card Related functions, that can only be used when a card is in the field.
Below you find the group box ISO 7816 – APDU, there you can send and receive APDUs for
asynchronous cards.

Every command produces output in the output log on the bottom of the window. This log can be
cleared with the button Refresh Output Screen. The return status of the last executed function is
shown in the group box Status of the latest operation.

The button Exit closes the application

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 45 of 51 Printed: 05.04.05 09:55

12.1.2 Reader Related functions

The functions in this group box can be used with or without a card in the field.

To store a transmission key do the following:

• Chose a key number, to which location the key will be stored

• Chose if the key will be transferred plain or secured and if secured with which Transmission
key it will be encrypted.

• Write the key in hex string format in the text field Transmission Key.

• Press the Button Write Transmission Key to Reader.

To store a mifare key do the following:

• Chose a key number, to which location the key will be stored

• Chose if the key will be transferred plain or secured and if secured with which Transmission
key it will be encrypted.

• Write the key in hex string format in the text field Mifare Key. If plain 6 bytes, if secured it will
be 8 bytes.

• Press the Button Write Mifare Key to Reader.

12.1.3 Mifare Card Related functions

Before using any of the Mifare Card Related functions Authentication to the card is required (Mifare
UltraLight does not need authentication).

To authenticate to a block of the card do the following:

• Put the block number to authenticate to in the field Block Nr.

• In the box Access Option chose whether a key number or a plain key will be supplied.

• In the box Authentication Mode chose Mode A oder Mode B.

• Press the button Authenticate.

After authentication it is possible to read and write blocks of the card and use the increment and
decrement functions.

12.1.4 ISO 7816 - APDU

If an asynchronous card is presented to the reader, it is possible to send APDUs directly to the card
and receive the answer with these functions.

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 46 of 51 Printed: 05.04.05 09:55

12.2 Code snippets

Here are some short code-snippets that explains how to use some of the functions.

12.2.1 Connect card

The following sample code will establish the context to resource manager, select a reader and
connect to a card. The commands to access the card can be added after the comment “Work with the
card”.

#include <stdio.h>

#include <winscard.h>

//defines and includes for Sync API
#define S_WNT
#include <okos.h>
#include <ok.h>
#include <scardcl.h>

int main(void) {
 SCARDCONTEXT hContext;
 DWORD dwErrorFlags;

 LPTSTR pmszReaders = NULL;
 LPTSTR pchCardReaderName = NULL;
 CHAR szReaderName[128];
 DWORD cch = SCARD_AUTOALLOCATE;

 DWORD dwActiveProtocol;
 SCARDHANDLE hSCARDHandle;

 //
 // Establish Context to resource manager
 //
 dwErrorFlags = SCardEstablishContext(SCARD_SCOPE_USER,
 NULL,
 NULL,
 &hContext);
 if (dwErrorFlags != SCARD_S_SUCCESS) {
 fprintf(stderr, "ERROR: SCardEstablishContext failed\n");
 exit(-1);
 }

 //
 // List Readers in the system
 //
 dwErrorFlags = SCardListReaders(hContext,
 NULL, //list all readers in the system
 (LPTSTR)&pmszReaders,
 &cch); //auto allocate
 if (dwErrorFlags != SCARD_S_SUCCESS) {
 fprintf(stderr, "ERROR: SCardListReaders failed\n");
 exit(-1);
 }

 //
 // Print the Reader List and select the first CardMan 5121
 //
 pchCardReaderName=pmszReaders;
 while (*pchCardReaderName!=0) {
 printf("<%s>\n", pchCardReaderName);
 if (!strncmp("OMNIKEY CardMan 5121", pchCardReaderName, 20)) {
 strcpy(szReaderName, pchCardReaderName);
 break;
 }
 pchCardReaderName += strlen(pchCardReaderName)+1;
 }

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 47 of 51 Printed: 05.04.05 09:55

 if (*pchCardReaderName == 0) {
 fprintf(stderr, "ERROR: No CardMan 5121 found\n");
 exit(-1);
 }
 else {
 printf("Selected: %s\n", pchCardReaderName);
 }

 //
 // Free the memory allocated by SCardListReaders
 //
 dwErrorFlags = SCardFreeMemory(hContext,
 pmszReaders);
 if (dwErrorFlags != SCARD_S_SUCCESS) {
 fprintf(stderr, "ERROR: SCardFreeMemory failed\n");
 exit(-1);
 }

 //
 // Connect to the card
 //
 // wait for card
 printf("Waiting for card\n");
 do {
 dwErrorFlags = SCardConnect(hContext,
 szReaderName,
 SCARD_SHARE_SHARED,
 SCARD_PROTOCOL_T0,
 &hSCARDHandle,
 &dwActiveProtocol);
 } while (dwErrorFlags == SCARD_E_NO_SMARTCARD ||
 dwErrorFlags == SCARD_W_REMOVED_CARD ||
 dwErrorFlags == SCARD_W_UNPOWERED_CARD);

 //
 // Work with the card
 //

 //
 // Disconnect from the card
 //
 dwErrorFlags = SCardDisconnect(hSCARDHandle,
 SCARD_RESET_CARD);

 //
 // Release Context
 //
 dwErrorFlags = SCardReleaseContext(hContext);

 return 0;
}

12.2.2 Mifare 1K/4K Authenticate

The following code-snippet will authenticate to the card
…
 //MIFARE 1K/4K authenticate
 OKERR okErr;
 BYTE keya[6] = {0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5};

 //Authenticate to card using keya and direct key input
 okErr = SCardCLMifareStdAuthent(hSCARDHandle,
 1, //block
 MIFARE_AUTHENT1A,
 MIFARE_KEY_INPUT,
 0, //keyNr
 keya,
 6);
 if (okErr != NO_ERROR) {
 fprintf(stderr, "ERROR: SCardCLMifareStdAuthent failed\n");
 exit(-1);
 }
…

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 48 of 51 Printed: 05.04.05 09:55

12.2.3 Mifare 1K/4K Read/Write

The following code-snippet will write and read one sector of the card.
…
 //MIFARE 1K/4K read and write
 OKERR okErr;
 BYTE patternMF1KSect[16] = {0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA};
 BYTE buffer[16];
 ULONG ulRead;

 //ScardCLMifareStdWrite
 okErr = SCardCLMifareStdWrite(hSCARDHandle,
 1, //block
 patternMF1KSect, //data buffer
 16); //no of bytes to write
 if (okErr != NO_ERROR) {
 fprintf(stderr, "ERROR: SCardCLMifareStdWrite failed\n");
 exit(-1);
 }

 //SCardCLMifareStdRead
 memset(buffer, 0x00, sizeof(buffer));
 okErr = SCardCLMifareStdRead(hSCARDHandle,
 1, //block
 buffer, //buffer to read in
 16, //no of bytes to read
 &ulRead); //no of read bytes
 if (okErr != NO_ERROR) {
 fprintf(stderr, "ERROR: SCardCLMifareStdRead failed\n");
 exit(-1);
 }
 if (ulRead != 16) {
 fprintf(stderr, "ERROR: SCardCLMifareStdRead failed (not enough bytes)\n");
 exit(-1);
 }
 if (memcmp(buffer, patternMF1KSect, 16) != 0) {
 fprintf(stderr, "ERROR: SCardCLMifareStdRead failed (compare failed)\n");
 exit(-1);
 }
…

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 49 of 51 Printed: 05.04.05 09:55

12.2.4 Mifare 1K/4K Increment/Decrement

The following code-snippet initializes one sector with a pattern which can be used for increment and
decrement operations and increments this sector by one. For a reference of increment and decrement
operations and sectors refer to the Mifare Datasheet.
…
 //Mifare 1K/4K Increment and Decrement
 //Mifare block with increment/decrement pattern. value = 0
 BYTE patternIncBlock0[16] = {0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
 0x00, 0x00, 0x00, 0x00, 0x01,
0xFE, 0x01, 0xFE};
 //Mifare block with increment/decrement pattern. value = 1
 BYTE patternIncBlock1[16] = {0x00, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFE,
 0x00, 0x00, 0x00, 0x01, 0x01, 0xFE, 0x01, 0xFE};
 BYTE inc1[4] = {0x00,0x00,0x00,0x01};

 BYTE buffer[16];
 ULONG ulRead;
 //Write Increment/Decrement pattern
 SCardCLMifareStdWrite(hSCARDHandle,
 1,
 patternIncBlock0,
 16);
 okErr = SCardCLMifareStdIncrementVal(hSCARDHandle,
 1, //block
 inc1,
 4);
 //compare
 SCardCLMifareStdRead(hSCARDHandle,
 1, //block
 buffer, //buffer to read data in
 16,
 &ulRead);
 if (okErr != NO_ERROR) {
 fprintf(stderr, "ERROR: SCardCLMifareIncrementVal failed\n");
 exit(-1);
 }
 if (memcmp(patternIncBlock1, buffer, 16) != 0) {
 fprintf(stderr, "ERROR: SCardCLMifareIncrementVal failed (compare)\n");
 exit(-1);
 }
…

12.2.5 iCLASS Select Page

The following code-snippet selects page 01 of a 8x2KS iCLASS card and returns the card serial
number.

 //Select page 0x02 of a 8x2KS iCLASS card

 UCHAR ucDataSend[7] = {0};
 ULONG ulNoOfDataSend = 7;
 UCHAR ucReceivedData[64] = {0};
 ULONG ulNoOfDataReceived = 64;

ucDataSend [0] = 0x80 //CLA
ucDataSend [1] = 0xA6 //INS
ucDataSend [2] = 0x01 //P1
ucDataSend [3] = 0x04 //P2, 0x04 returns card serial number
ucDataSend [4] = 0x01 //Lc
ucDataSend [5] = 0x02 //Page number
ucDataSend [6] = 0x08 //Le

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 50 of 51 Printed: 05.04.05 09:55

OKErr =
SCardCLICCTransmit(hCard,ucDataSend,ulNoOfDataSend,ucReceivedData,&ulNoOfDataReceived);

 if(OKErr != NO_ERROR)
 {
 printf("Error in SCardCLICCTransmit, with error code %8X", OKErr);
 exit(-1);
 }

Title: CardMan 5121 RFID Developers guide Version: 1.01
Created/Modified: 05.04.05 09:54 Page: 51 of 51 Printed: 05.04.05 09:55

13 Tested cards

CardMan 5121 is capable to support every card which follows any of the standards ISO14443A,
ISO14443B or ISO15693.

The following cards have been tested to work with CardMan 5121:

ISO14443A:
• Mifare 1K
• Mifare 4K
• Mifare Ultra Light
• Desfire v0.4
• Desfire v0.5
• Mifare Prox SPK D1
• Mifare Prox
• SLE 44R35S
• SLE 66R35
• SLE 55R16
• TCOS CLX
• TCOS NET
• IC-ONE

ISO14443B:
• AT88RF020
• AT88SC0204CRF
• AT88SC0808CRF
• AT88SC1616CRF
• AT88SC3216CRF
• AT88SC6416CRF
• SR176
• SRIX4K
• SLE66CL
• Setec

ISO15693:
• SRF 55V10P
• SRF 55V10S
• Tag-IT
• LRI 512
• KSW TempSens
• ICODE SLI
• iCLASS 2K
• iCLASS 2K AG
• iCLASS 16K
• iCLASS 16K CE
• PicoPass 2KS
• PicoTag 2KS
• ICODE-1

