

15370 Barranca Parkway
Irvine, CA 92618-2215

Contactless Smart Card Readers

DEVELOPER GUIDE

© 2005 - 2010 HID Global Corporation. All rights reserved.

January 11, 2010

Doc Number: 5321-903, Rev A.1.20

Contactless Developer Guide - 5321-903_A.1.20

Contents
Purpose .. 3
1 Contactless Reader Coverage .. 4
2 Getting Started ... 5

2.1 Driver Installation .. 5
2.2 Diagnostic Tool ... 8

3 PC/SC 2.0 .. 12
3.1 How to Access Contactless Cards through PC/SC .. 12
3.2 ATR Generation .. 14

4 Accessing Asynchronous Cards.. 15
4.1 MIFARE DESFire Card ... 15

5 Accessing Synchronous Cards (Storage) ... 17
5.1 MIFARE Card.. 17
5.2 iCLASS Card... 21
5.3 ST LRI64 Support (PC/SC 2.0 add-on)... 22
5.4 ISO15693-3 Memory Card Support .. 23

6 Communication with MIFARE Plus .. 24
6.1 ISO 14443 A – part 4 card communication... 24
6.2 ISO 14443 A – part 3 card communication... 24
6.3 Open Generic Session.. 24
6.4 Generic Card Commands ... 25
6.5 Close Generic Session ... 26

7 CardMan 5x21-CL Keys ... 27
7.1 Key Numbering Scheme ... 27
7.2 Key Container and Slots ... 30
7.3 Key Update Rules ... 31

8 Standard Communication with iCLASS Card.. 32
8.1 APDU Structure for Standard Communication ... 32
8.2 Commands Available in Standard Communication Mode .. 32
8.3 Communication in Standard Mode.. 40

9 Secured Communication with the iCLASS Card .. 41
9.1 Multi-Step Approach to a Secure Card Reader System ... 41
9.2 APDU Structure for Secured Communication... 42
9.3 Instructions (INS) for Secured Communication .. 45
9.4 Communication at Secured Mode... 49
9.5 Session at Secured Mode APDUs Example... 50

10 Reading ISO15693.. 53
10.1 Products .. 53
10.2 Tags .. 53
10.3 Commands.. 54

11 OMNIKEY 5321 PAY Application Interface ... 62
11.1 PayPassTM card transactions .. 62
11.2 LED and Buzzer control .. 62
11.3 Switch-over the operating mode ... 64

12 CardMan 5125 Registry Settings .. 66

Page 2 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

12.1 Legend / Additional Information .. 67
12.2 Automatic Mode .. 67
12.3 Windows Custom Mode .. 68
12.4 Linux & Mac OS X Custom Mode ... 73

Appendix A - Application Programming... 74
A1 Sample Project.. 74
A2 Code Examples... 76

Appendix B - Accessing iCLASS Memory.. 86
B1.1 Memory Layout .. 86
B1.2 iCLASS Application 2 - Assigning Space .. 87
B1.3 iCLASS Read/Write Memory - 2KS, 16KS or 8x2KS page 0 .. 87
B1.4 iCLASS 8x2KS Card - Pages 1 to 7 Read/Write Memory ... 87

Appendix C - Terms and Abbreviations.. 88
Appendix D - Version History .. 89

D1.1 Document Changes... 89
D1.2 Firmware History ... 89

Appendix E - References.. 90

Trademarks
HID, HID Global and OMNIKEY are the trademarks or registered trademarks of HID Global Corporation in
the U.S. and other countries.

MIFARE® is a registered trademark of NXP Semiconductors
my-d TM is a registered trademark of Infineon Technologies

Contacts
OMNIKEY brand product support

HID Global GmbH
email: eusupport@hidglobal.com
Fax: +49 (0) 6123 7913-28
web: http://www.hidglobal.com/omnikeyCustomerSupportForm.php
 http://www.hidglobal.com/omnikey

Purpose

Guide for developers for integrating contactless storage or CPU cards using OMNIKEY CardMan 5x21 and
6x21 smart card readers.

January 11, 2010 Page 3 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

mailto:eusupport@hidglobal.com
http://www.hidglobal.com/omnikeyCustomerSupportForm.php
http://www.hidglobal.com/omnikey
https://www.cardlogix.com/product-category/card-readers/

Contactless Developer Guide - 5321-903_A.1.20

1 Contactless Reader Coverage
This document is intended as a guide for software developers who want to integrate contactless memory or
CPU cards using contactless OMNIKEY smart card readers.

The following OMNIKEY contactless readers are covered by this document:

• OMNIKEY 5321
Desktop Smart Card reader with contact and contactless interface, contactless interface featuring
full contactless functionality as described in this developers guide.

• OMNIKEY 5321 CL
Desktop reader in a closed housing, same functionality as OMNIKEY 5321 but contactless-only
reader.

• OMNIKEY 5321 CR
Desktop reader in a waterproof (Clean Room) closed housing, same functionality as OMNIKEY
5321 but contactless-only reader.

• OMNIKEY 6321
Mobile Smart Card reader with SIM-sized contact and contactless interface. Contactless interface
features full contactless functionality.

• OMNIKEY 6321 CLi
Mobile Smart Card reader with contactless-only interface. Contactless interface supports iCLASS-
only.

• OMNIKEY 5321 CLi

• Desktop Smart Card reader in a closed housing, with contactless-only interface. Contactless
interface supports iCLASS-only.

• OMNIKEY 5325 Prox
Desktop Smart Card reader with contact and contactless interface. Contactless interface features
operating on 125 kHz (Prox). The PC/SC section of this guide applies for this reader.

All readers listed are based on the OMNIKEY 5x21 RFID chipset. Therefore this document will use the term
5x21 to reference OMNIKEY readers.

Page 4 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

https://www.cardlogix.com/product-tag/omnikey/
https://www.cardlogix.com/product/hid-omnikey-5321-cl-sam-smart-card-reader/

 Contactless Developer Guide - 5321-903_A.1.20

2 Getting Started
This chapter describes how to install the drivers necessary to operate the OMNIKEY 5x21 in a Windows based
environment.

Note: Other operating systems, such as Linux, are also supported by the OMNIKEY 5x21.

2.1 Driver Installation
The OMNIKEY 5x21 driver is mandatory for all systems that require support for contactless smart cards.

OMNIKEY 5x21 is a CCID compliant device. This means that the contact interface can be operated without an
OMNIKEY proprietary driver installed. However, for contactless cards, the OMNIKEY proprietary OMNIKEY
5x21 driver is necessary.

The following steps describe how to install the OMNIKEY 5x21 driver:

1. First, go to http://www.hidglobal.com/omnikey. Based on the appropriate reader, click the
driver icon. Download the latest OMNIKEY 5x21 driver installation package for Windows.

2. Run the installation package and follow the instructions. The installation package extracts
all the necessary driver files to your hard drive.

Take note of the location to which the files were copied.

At this time you have only extracted, not installed the driver files.

3. Connect the reader to your computers USB port.

4. The Found New Hardware Wizard appears. To continue driver installation, click Next.

Note: On Windows XP systems, the Microsoft Windows CCID Class driver may be activated without
showing the Found New Hardware Wizard. If this is the case, replace the Microsoft PC/SC driver
manually with the OMNIKEY proprietary PC/SC driver using the Device Manager.

January 11, 2010 Page 5 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

http://www.hidglobal.com/omnikey

Contactless Developer Guide - 5321-903_A.1.20

5. Select Search for a suitable driver for my device (recommended) and click Next.

6. Then, select Specify a Location and click Next.

7. Click Browse and go to the location where you previously installed the driver package. To

continue, click OK.

8. If the driver was found, click Next.

Page 6 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

9. If the driver is a beta driver and not digitally signed, the following dialogue appears. Click
Yes.

10. The following message appears and the green LED illuminates on the OMNIKEY 5x21
reader.

If the installation was successful, the green LED on the reader illuminates and the reader is listed in
the diagnostic tool as OMNIKEY 5x21.
Your reader is ready for use. Do a quick smart card system check using the OMNIKEY Diagnostic
Tool described in Diagnostic Tool, page 8.

2.1.1 Reader Name for Contact/Contactless Slot
OMNIKEY 5x21 is a dual slot reader. This means that from the application and smart card resource manager
viewpoint there are two readers available, each represented by its respective reader name. OMNIKEY 5x21 n
identifies the contact slot and CardMan 5x21-CL n stands for the contactless slot. The n represents a slot
number 0, 1… etc. This allows card tracking through the contact and air interface.

January 11, 2010 Page 7 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

2.2 Diagnostic Tool
The OMNIKEY Diagnostic tool provides a quick test of the smart card system. It lists all available OMNIKEY
readers, driver files with version, firmware version, and allows the configuration of the RFID/air interface.

Go to http://www.hidglobal.com/omnikey > select the OMNIKEY Reader > click the driver icon to download the
latest OMNIKEY Diagnostic Tool for Windows.

Start former versions of the Diagnostic Tool from the Control Panel.

2.2.1 Driver Version Detection
The General tab shows if the Resource Manager is running. In addition, this tab shows smart card system
services version, manufacturer data, DLLs, and drivers.

Figure 1 - Diagnostic Tool - General

2.2.2 OMNIKEY Proprietary API Detection
The API tab shows the APIs installed on your system, including the OMNIKEY Synchronous API.

Figure 2 - Diagnostic Tool - API

Page 8 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

http://www.hidglobal.com/omnikey
https://www.cardlogix.com/product-category/sort-by-manufacturer/hid/

 Contactless Developer Guide - 5321-903_A.1.20

2.2.3 Card and Reader Detection
The OMNIKEY Diagnostic tool creates a separate tab for each available OMNIKEY reader interface. The tabs
indicate their respective reader names - the same names you will be using within the PC/SC framework.

For a quick connectivity test of your contactless card, select the OMNIKEY CardMan 5x21-CL 0 tab and place
a contactless card on the reader. As soon as the card is detected, the Status field will switch from No smart
card inserted to Smart card inserted and the ATR field will display the card’s ATR. Please refer to the
chapter about ATR for further information on how the Answer to Reset (ATR) is generated for contactless
smart cards.

The Diagnostic Tool has an internal flat database that allows a quick lookup of the ATR. If it is a known card, a
description will be displayed in the Smart Card Name field. For contactless cards the card’s unique ID (UID)
will be displayed in the Smart Card Name field and in the Protocol field T=CL will be displayed.

No smart card Smart card inserted

Figure 3 – Diagnostic Toll - Reader

January 11, 2010 Page 9 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

https://www.cardlogix.com/product-category/smart-cards/

Contactless Developer Guide - 5321-903_A.1.20

2.2.4 Card Type Detection and RFID Settings
CardMan 5x21-CL supports multiple 13.56 MHz contactless standards and protocols including ISO14443A,
ISO14443B, ISO15694, iCLASS, I-CODE. Acquire information about a card within the RFID field in a
predefined search order. With built-in anti-collision, once a card is detected it is the only card in which the
reader is connected.

The OMNIKEY Diagnostic tool has a RFID Settings tab that allows configuration of the reader card and their
respective search order. First enable the RFID Settings tab by right-clicking the title bar of the Diagnostic Tool
window and then choosing View > RFID settings from the drop-down menu.

Figure 4 – Diagnostic Tool – RFID Settings

The left pane contains a list of active card types. The right pane contains a list of available card types that are
supported by the reader but are not included in the card search. Move card types from the left to the right pane
using the and buttons. Change the search order with the and buttons.

Activate this setting using the Apply button. The Reset button discards any unsaved changes.

Note: The search order is forward-looking to improve system performance. The last successfully detected
card type automatically moves to the top of the search order, regardless of its position within the order set on
the RFID settings tab.

Page 10 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

2.2.5 Air Interface Baud Rate Configuration
For ISO 14443 cards, the air interface transmission speed can be 106 kbps, 212 kbps, 424 kbps, or 848 kbps.
By default, the contactless interface is set to 424 kbps. Change the interface transmission speed to a different
value through the Diagnostic Tool RFID settings tab.

Baud Rate Change (old) Baud Rate Change (new)

Figure 5 – Baud Rate Change
To change the baud rate, select the card type (ISO14443A or ISO14443B) and change the maximum Baud
Rate field. Finalize your setting, click Apply.

January 11, 2010 Page 11 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Page 12 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

3 PC/SC 2.0
With the OMNIKEY 5x21 PC/SC driver, access ISO14443A/B or ISO15693 contactless cards through the
same framework as ISO7816 contact cards. This makes card integration a snap for any developer who is
already familiar with PC/SC. Even valuable PC/SC resource manager functions, such as card tracking, are
available for contactless card integration.

The Microsoft® Developer Network (MSDN®) Library contains valuable information and a complete
documentation of the SCard API within the MSDN Platform SDK.

See http://msdn.microsoft.com/en-us/library/ms953432.aspx.

Access contactless CPU cards directly through PC/SC. For storage cards other than MIFARE, an additional
library – the OMNIKEY synchronous API – is necessary. Whether using direct PC/SC access or the OMNIKEY
synchronous API, only a small set of functions are required to write your first hello card program.

 Integrate your card through:
 PC/SC 2.0 compliant APDU’s OMNIKEY Synchronous API
MIFARE YES YES
iCLASS NO YES
LRI64 YES NO

3.1 How to Access Contactless Cards through PC/SC
The following steps provide a guideline to create your first contactless smart card application using industry
standard, PC/SC compliant API function calls. The function definitions provided are taken verbatim from the
MSDN Library [MSDNLIB]. For additional descriptions of these and other PC/SC functions provided by the
Microsoft Windows PC/SC smart card components, refer directly to the MSDN Library. See
http://msdn.microsoft.com/en-us/library/ms953432.aspx.

1. Establish Context
This step initializes the PC/SC API and allocates all resources necessary for a smart card session.
The SCardEstablishContext function establishes the resource manager context (scope) within
which database operations is performed.
LONG SCardEstablishContext(IN DWORD dwScope,
 IN LPCVOID pvReserved1,
 IN LPCVOID pvReserved2,
 OUT LPSCARDCONTEXT phContext);

2. Get Status Change
Check the status of the reader for card insertion, removal, or availability of the reader.
This SCardGetStatusChange function blocks execution until the current availability of the cards in
a specific set of readers change. The caller supplies a list of monitored readers and the maximum wait
time (in milliseconds) for an action to occur on one of the listed readers.
LONG SCardGetStatusChange(IN SCARDCONTEXT hContext,
 IN DWORD dwTimeout,
 IN OUT LPSCARD_READERSTATE rgReaderStates,
 IN DWORD cReaders);

http://msdn.microsoft.com/en-us/library/ms953432.aspx
http://msdn.microsoft.com/en-us/library/ms953432.aspx
https://www.cardlogix.com/product-category/smart-cards/contactless-rfid-cards/

 Contactless Developer Guide - 5321-903_A.1.20

3. List Readers
Gets a list of all PC/SC readers using the SCardListReaders function. Look for OMNIKEY
CardMan 5x21-CL 0 in the returned list. If multiple OMNIKEY 5x21 readers are connected to your
system, they will be enumerated.
Example: OMNIKEY CardMan 5x21-CL 1, and OMNIKEY CardMan 5x21-CL 2.
Analyze the complete string. CardMan 5x21 also has a contact interface. Look for -CL in the reader
name to ensure you are referring to the contactless interface in the following calls.
LONG SCardListReaders(IN SCARDCONTEXT hContext,
 IN LPCTSTR mszGroups,
 OUT LPTSTR mszReaders,
 IN OUT LPDWORD pcchReaders);

4. Connect
Now, you can connect to the card. The SCardConnect function establishes a connection (using a
specific resource manager context) between the calling application and a smart card contained by a
specific reader. If no card exists in the specified reader, an error is returned.
LONG SCardConnect(IN SCARDCONTEXT hContext,
 IN LPCTSTR szReader,
 IN DWORD dwShareMode,
 IN DWORD dwPreferredProtocols,
 OUT LPSCARDHANDLE phCard,
 OUT LPDWORD pdwActiveProtocol);

Note: For iCLASS cards use T=0 protocol (mandatory).

5. Exchange Data and Commands with the Card
Exchange command and data through APDUs. The SCardTransmit function sends a service
request to the smart card, expecting to receive data back from the card.
LONG SCardTransmit(IN SCARDHANDLE hCard,
 IN LPCSCARD_I0_REQUEST pioSendPci,
 IN LPCBYTE pbSendBuffer,
 IN DWORD cbSendLength,
 IN OUT LPSCARD_IO_REQUEST pioRecvPci,
 OUT LPBYTE pbRecvBuffer,
 IN OUT LPDWORD pcbRecvLength);

Note: For unsupported PC/SC 2.0 storage cards, call an OMNIKEY proprietary API function such as
SCardCLICCTransmit instead. This function exposes additional functionality of the OMNIKEY
5x21-CL reader that is not yet defined in PC/SC standards. Otherwise, you are still using the standard
PC/SC framework to track cards, list readers, etc. Even the smart card handle is the same.

January 11, 2010 Page 13 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

6. Disconnect
It is not absolutely necessary to disconnect the card after the completion of all transactions, but it is
recommended. The SCardDisconnect function terminates a connection previously opened
between the calling application and a smart card in the target reader.
LONG SCardDisconnect(IN SCARDHANDLE hCard,
 IN DWORD dwDisposition);

7. Release
This step ensures all system resources are released. The SCardReleaseContext function closes
an established resource manager context, freeing any resources allocated under that context.
LONG SCardReleaseContext(IN SCARDCONTEXT hContext);

3.2 ATR Generation
Unlike contact cards, contactless cards do not generate an ATR. Instead, they generate an Answer to Select
(ATS). To make contactless cards available within the PC/SC framework, OMNIKEY 5x21 generates a PC/SC
compliant ATR according to PC/SC v2.01.

Download the documents from the PC/SC Workgroup at the following web address:
http://www.pcscworkgroup.com/specifications/specdownload.php.

3.2.1 CPU Cards
Contactless smart cards (cards with a CPU) expose their ATS or information bytes through ATR mapping
according to PC/SC 2.01 - Part 3: Requirements for PC-Connected Interface Devices, section 3.1.3.2.3.1
Contactless Smart Cards, Table 3.5.

3.2.2 Storage Cards
The ATR of storage cards (for example, cards without a CPU) is composed as described in PC/SC 2.01 - Part
3: Requirements for PC-Connected Interface Devices, section 3.1.3.2.3.2 Contactless Storage Cards,
Table 3.6. For the host application to identify a storage and card type properly, its standard and card name is
mapped according to PC/SC 2.01 - Part 3: Requirements for PC-Connected Interface Devices -
Supplemental Document.

Note: The Registered Application Provider Identifier (RID) returned by the OMNIKEY 5x21 for storage cards
(cards without a CPU) is A0 00 00 06 0A, indicating a PC/SC compliant ATR generation.

Page 14 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

http://www.pcscworkgroup.com/specifications/specdownload.php

 Contactless Developer Guide - 5321-903_A.1.20

4 Accessing Asynchronous Cards
Asynchronous cards contain a CPU or are memory cards accessible through standard PC/SC using Microsoft’s
library winscard.dll. This type of card supports at least one of the asynchronous protocols T=0 or T=1. The
Microsoft Platform SDK contains PC/SC sample code for Visual C/C++ and Visual Basic.

No additional libraries or third-party software components are necessary to integrate contactless CPU cards.

4.1 MIFARE DESFire Card
MIFARE DESFire cards are accessed through ISO7816-4 compliant framed APDU commands (ISO7816-4
framing).

New versions of MIFARE DESFire cards (EV1) support extended APDU commands. For this the driver must
switch to DESFire native mode. This native mode is not default for the OMNIKEY 5x21. For proper protocol
settings use the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CardMan\RFID

DesfireNative=0x00000001

Note: Restart the OMNIKEY 5x21 driver after changing the registry key (disconnect and reconnect the
reader).

4.1.1 Example: Write Card Data through ISO 7816-4 Framed APDU

Command Syntax

CLA INS P1 P2 Lc File No. Offset Length Data Le
‘90’ ‘3D’ ‘00’ ‘00’ ‘xx’ ‘xx’ ‘xxxxxx’ ‘xxxxxx’ ‘xx’ … ‘xx’ ‘00’

Lc = 7+ DataLength; Le=0 (no other values accepted)

Response Syntax

Response Data SW1 SW2

empty ‘xx’ ‘xx’

Status Codes

SW1 SW2 Description
'90' '00' success
'91’ 'xx error (refer to the MIFARE DESFire data sheet)

January 11, 2010 Page 15 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

https://www.cardlogix.com/product/mifare-desfire-ev1-8k/

Contactless Developer Guide - 5321-903_A.1.20

4.1.2 Example: Read Card Data through ISO 7816-4 Framed APDU

Command Syntax

CLA INS P1 P2 Lc File No. Offset Length Data Le
‘90’ ‘BD’ ‘00’ ‘00’ ‘07’ ‘xx’ ‘xxxxxx’ ‘LLLLLL’ empty ‘00’

Le=0 (no other values accepted)

Response Syntax

Response Data SW1 SW2
‘xx’ ... ‘xx’ (‘LLLLLL’ bytes) ‘xx’ ‘xx’

Status Codes

SW1 SW2 Description
'90' '00' success
'91’ 'xx error (refer to the MIFARE DESFire data sheet)

Page 16 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

5 Accessing Synchronous Cards (Storage)
OMNIKEY provides two ways to integrate contactless storage cards. One option is OMNIKEY’s proprietary
synchronous API library, or for MIFARE cards, directly through PC/SC 2.0 compliant function calls. Access
storage cards not supported through PC/SC 2.0 compliant APDU exchanges through OMNIKEY proprietary
synchronous API.

The synchronous API for Windows systems resides in a DLL named scardsyn.dll. Download the Synchronous
API for OMNIKEY 5x21 from www.hidglobal.com/omnikey and execute the setup
CardMan_Synchronous_API_V1_1_1_4.exe. The setup include this DLL. The download also contains
sample code for MIFARE and iCLASS cards. For information about this API, refer to the help file cmsync.hlp
available in the c:\omnikey\hlp folder after installation of the synchronous API with default settings.

The OMNIKEY Synchronous API is used whenever a card has not yet found its way into the PC/SC 2.0
standard. Currently, only MIFARE cards can be integrated through PC/SC 2.0 compliant APDU.

 Integrate Card through
 PC/SC 2.0 compliant APDUs OMNIKEY Synchronous API
MIFARE Yes Yes

iCLASS No Yes

No special drivers are required for PC/SC 2.0 compliant card integration with Windows or Linux. OMNIKEY’s
latest drivers provide seamless cross-platform support allowing industry standard-compliant contactless card
integration.

5.1 MIFARE Card
OMNIKEY 5x21 supports MIFARE Mini, MIFARE 1K, MIFARE 4K and MIFARE Ultra Light cards.

The following functions are supported through PC/SC:

GetUID
LoadKey
Authenticate
Verify
Update Binary
Read Binary

Implemented according to [PCSC 2.01]

Increment OMNIKEY proprietary extension of PC/SC
Decrement OMNIKEY proprietary extension of PC/SC

MIFARE Emulation Mode OMNIKEY proprietary extension of PC/SC
CM_IOCTL_SET_RFID_CONTROL_FLAGS

Refer to the [PCSC 2.01] and [MIFARE] for documentation of PC/SC 2.0 compliant MIFARE card access. The
following section only describes usage of functions that are not already documented in [PCSC 2.01]. They are
part of an OMNIKEY proprietary extension of PC/SC.

January 11, 2010 Page 17 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

http://www.hidglobal.com/driverDownloads.php?techCat=19.%20
https://www.cardlogix.com/product/mifare-ultralight/
https://www.cardlogix.com/product/mifare-classic-ev1-4k-7uid/
https://www.cardlogix.com/product/mifare-classic-1k-4uid-nxp-2/

Contactless Developer Guide - 5321-903_A.1.20

5.1.1 MIFARE Increment (Card Command)
This command increments the value of a block, if the card and block supports this functionality:

Command Syntax

CLA ‘FF’

INS ‘D4’

P1 MSB of block address

P2 LSB of block address

LC 1

Data Field One byte value indicating block increment

Le empty

Response Syntax

Data Field Empty

SW1 SW2 status word as described below
‘90’ ‘00’ Success
'65' ‘81’ memory failure (unsuccessful increment)
‘69’ ‘81’ incompatible command
‘69’ ‘82’ security status not satisfied
‘69’ ‘86’ command not allowed
‘6A’ ‘81’ function not supported
‘6A’ ‘82’ invalid block address

Page 18 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

5.1.2 MIFARE Decrement (Card Command)
This command decrements the value of a block, if the card and block support this functionality:

Command Syntax

CLA ‘FF’

INS ‘D8’

P1 MSB of block address

P2 LSB of block address

LC 1

Data Field one byte value indicating block decrement

Le Empty

Response Syntax

Data Field Empty

SW1 SW2 status word as described below
‘90’ ‘00’ Success
'65' ‘81’ memory failure (unsuccessful decrement)
‘69’ ‘81’ incompatible command
‘69’ ‘82’ security status not satisfied
‘69’ ‘86’ command not allowed
‘6A’ ‘81’ function not supported
‘6A’ ‘82’ invalid block address

January 11, 2010 Page 19 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

5.1.3 MIFARE Emulation Mode
By default, the OMNIKEY 5x21 driver exposes standard MIFARE storage cards through a PC/SC 2.01
compliant interface. This driver-level MIFARE emulation mode makes standard MIFARE cards available
through standard APDUs even though the card itself does not support any asynchronous protocols supported
directly by native PC/SC components.

Dual-interface cards work differently. Their CPU supports communication through ISO14443A part 4 (T=CL)
allowing on-card MIFARE emulation rather than host-side MIFARE emulation. This means that OMNIKEY
5x21’s default mode (for example, host-side MIFARE emulation) must be disabled to support the on-card
MIFARE emulation of a dial-interface card.

There are two ways to switch between host-side and card-side MIFARE emulation:

1. Registry keys

2. IO controls using the PC/SC function ScardControl() as described in Appendix A2.8
MIFARE Emulation Mode (OMNIKEY Proprietary API).

The following registry keys let you switch between OMNIKEY MIFARE emulation mode (default) and on-card
MIFARE emulation.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CardMan\RFID

ControlFlags=0x00000004 OMNIKEY’s host-side MIFARE emulation ON

 default

ControlFlags=0x00000000 OMNIKEY’s host-side MIFARE emulation OFF

T=CL, for on-card MIFARE emulation
Note: The OMNIKEY 5x21 driver needs to be (re)started after changing the registry keys (disconnect and
reconnect the reader).

5.1.4 MIFARE Application Directory (MAD)
To access the MIFARE Application Directory (MAD), two commands are necessary – Authenticate and Read.
The following steps describe how to retrieve a MAD from a MIFARE card:

1. Authenticate block 3 with the Public key ‘A0A1A2A3A4A5’ and authentication mode A.

2. Read Block 3.

3. Read Block 2.

4. Read Block 1.

For information about the block content see:

http://www.nxp.com/acrobat_download/other/identification/M001830.pdf

Page 20 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

http://www.nxp.com/acrobat_download/other/identification/M001830.pdf

 Contactless Developer Guide - 5321-903_A.1.20

5.2 iCLASS Card
Only access the HID iCLASS cards through OMNIKEY’s proprietary scardsyn API. This synchronous API
contains a function that is dedicated to accessing contactless cards using the standard PC/SC card handle.

OMNIKEY CardMan 5x21-CL exposes all iCLASS functions necessary to access any of the application areas
on an iCLASS card. The two modes of communication supported between the card and the application are:

1. Standard mode communication

2. Secured mode communication (OMNIKEY proprietary mode)
Note: OMNIKEY OMNIKEY 5x21 does not allow WRITE access to the HID application (1st application on
page 0). For READ access to the HID application, secured communication (available for firmware version
5.00 and greater) is mandatory.

5.2.1 Card Access through SCardCLICCTransmit
SCardCLICCTransmit is the OMNIKEY proprietary function to access HID iCLASS cards through the
OMNIKEY synchronous API. It supports both, standard and secure communication modes and is defined as
follows:

OKERR ENTRY SCardCLICCTransmit (IN SCARDHANDLE ulHandleCard,
 IN PUCHAR pucSendData,
 IN ULONG ulSendDataBufLen,
 IN OUT PUCHAR pucReceivedData,
 IN OUT PULONG pulReceivedDataBufLen);

Parameter Description

ulHandleCard handle to the card, provided from the PC/SC smart card resource
manager after connecting to the card with SCardConnect

pucSendData buffer for data sent to the reader/card, typically a command APDU
ulSendDataBufLen length of the data to be sent
pucReceivedData buffer for data received from reader/card, typically data and status

before the call: length (in bytes) of the receive buffer
after the call: number of bytes actually received pulReceivedDataBufLen

Command Syntax

CLA INS P1 P2 Lc Input Data or Datagram*** Le
‘8x’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ... ‘xx’ (Lc bytes) ‘xx’

Response Syntax

Response Data or Datagram*** SW1 SW2
‘xx’ .. ‘xx’ (Le or max bytes) ‘xx’ ‘xx’

Status Codes

SW1 SW2 Description
'90' '00' success
'64' '00' card execution error
'67' '00' wrong length
'68' '00' invalid class (CLA) byte

'69' '82'
security status not satisfied. This can include wrong data structure, wrong
keys, incorrect padding.

'6A' '81' invalid instruction (INS) byte
'6B' '00' wrong parameter P1 or P2

January 11, 2010 Page 21 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

The error codes defined in the above table are valid for all the commands. Command specific error codes are
documented with their respective command documentation.

Note: The error code ‘6982’ security status not satisfied, received during secured communication, blocks
any further commands. Remove and reinsert the card to reactivate communication with the card.

5.3 ST LRI64 Support (PC/SC 2.0 add-on)
ST Microelectronics’ LRI64 is a memory tag IC with 64-bit Unique ID (UID) and WORM user area. The
following table lists PC/SC 2.01 compliant functions that are available for LRI64 based storage cards.

Get UID
Update Binary implemented according to [PCSC 2.01]
Read Binary

This ISO15693 compliant IC is not accessible with standard driver settings. It requires the following registry key
setting:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CardMan\RFID]

"ControlFlags"=dword:00000010
Refer to the [PCSC 2.01] and [LRI64] for documentation of PC/SC 2.0 compliant LRI64 card access. The
following section describes usage of functions that are not already documented in [PCSC 2.01].

5.3.1 Update Binary
UpdateBinary requires block numbers within the WORM memory area (Write-Once Read-Many).

Examples:
Write ‘121314’ to block ‘0D’ (decimal 12):
Command APDU: ‘FFD6000D03121314’
Response APDU: ‘9000’
Attempt to write ‘101112 to block ‘0A’ (10 decimal):
Command APDU: ‘FFD6000A03101112’
Response APDU: ‘6282’
For blocks 10 and 11 this works out fine, however, because we previously wrote to block 12, the card
responds with ‘6282’ End of file reached before writing Lc bytes. After the first write access
to block 12 only read operations are supported.

The following APDU attempts to write to block 7:
Command APDU: ‘FFD6000701FF’
Response APDU: ‘6581’
The card responds with ‘6581’ Memory failure (unsuccessful writing) because this is a UID byte -
write access to the UID area is always locked.

Page 22 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

5.3.2 Read Binary
The ReadBinary command is available for all blocks of the LRI64 chip.

Examples:
Reading all 15 blocks from 0 to 14
Command APDU: ‘FFB0000000’
Response APDE: ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx9000’

Attempt to read 16 blocks
Command APDU: ‘FFB0000010’
Response APDE: ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx6282’

The response is ‘6282’ or End of file reached before reading expected number of bytes. Even
though the warning ‘6282’ is returned, all bytes from block 0 up to block 14 are read correctly.

Read blocks 10 and 11 (2 bytes)
Command APDU: ‘FFB0000A02’
Response APDE: ‘xxxx9000’

Attempt to read an invalid block number:
Command APDU: ‘FFB0000F01’
Response APDE: ‘6A82’

The response is the error code ‘6A82’ because block number 15 does not exist.

5.4 ISO15693-3 Memory Card Support
For detailed information about supported ISO15693 Tags please refer to chapter 10 Reading ISO15693.

READ BINARY and UPDATE BINARY is compliant to PS/SC2.01 (see chapter 3 PC/SC 2.0).

January 11, 2010 Page 23 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

6 Communication with MIFARE Plus
Depending on the card security level the reader activate the MIFARE Plus card in the ISO 14443A Layer 3 or in
the ISO 14443A Layer 4 (T=CL).

Security Level Protocol Type

MIFARE Plus SL 0 ISO 14443 A – 4

MIFARE Plus SL 1 ISO 14443 A – 3

MIFARE Plus SL 2 ISO 14443 A – 3

MIFARE Plus SL 3 ISO 14443 A – 4

Note : The OMNIKEY synchronous API do not support the new MIFARE Plus cards e.g. SL1 cards. The
command set from PC/SC 2.01 part 3 must be used. The MIFARE functions from the sample application
„contactlessdemoVC“ and „contactlessdemoVB“ do not work with MIFARE Plus cards.

6.1 ISO 14443 A – part 4 card communication
If the card is activated in protocol layer 4, then the application can communicate with the MIFARE Plus card by
calling SCardTransmit. The card command will be transferred directly to the MIFARE Plus card by using the
T=CL protocol layer. The T=CL protocol layer is done by the driver. The application can use this type of
communication for all card commands in SL0 and SL3. For MIFARE Plus details refer to the MIFARE Plus data
sheet from NXP.

The application can execute the card provisioning in security level 0 or the AES authentication in security level
3 by direct transferring of the MIFARE Plus commands.

6.2 ISO 14443 A – part 3 card communication
If the card is activated in protocol layer 3, then the application can not use the direct card communication. For
this type of communication an transparent transmission cannel to the card is necessary. Currently is an
amendment proposal for PC/SC specification part 3 (HID, NXP) for this type of communication in discussion
with the PC/SC work group.

Because the standardization is not concluded, the OMNIKEY 5x21 reader provide an HID proprietary
transparent cannel. In this cannel the application can communicate with generic card commands (clause 6.3,
6.4 and 6.5).

6.3 Open Generic Session
Stop the driver activity for card tracking and initialize the generic command session. Take the card control to
the application

Table 1 INIT GENERIC SESSION Command APDU
Command Class INS P1 P2 Lc Data In Le
Init Session 0xFF 0xA0 0x00 0x07 0x03 0x01 0x00 0x01 -

Table 2 INIT GENERIC SESSION Command Output
Data Out
SW1 SW2 = 0x9000

Page 24 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

At first the application must send the following APDU with SCardTransmit

Send FFA0000703010001

Receive 9000

6.4 Generic Card Commands
Write the Mifare+ command in an transparent cannel to the card. The Application send the Generic Card
Command APDU with SCardTransmit.

Table 3 GENERIC CARD COMMAND APDU
Command Class INS P1 P2 Lc Data In Le

Card Command 0xFF 0xA0 0x00 0x05 6+n 01 00 F3 00 00 64 + Mifare+ command 00

Preamble Mifare+ card command Explanation

01 00 F3 00 00 64 E1 81 ISO14443-3 RATS
01 00 F3 00 00 64 0A 01 70 02 90 00 ISO14443-4 First Authentication

Do never change the red labeled preamble.

The green labeled data field is the PCB and CID. The application is responsible for the correct usage of the
Protocol Control Byte (PCB) 0000 1010. The green labeled bit 0 is the block number (see ISO14443-4 clause
7.5.3 Block numbering rules).

Table 4 GENERIC CARD COMMAND Output
Data Out
RF Controller Status Mifare+ card answer SW1 SW2

Byte1 Byte 2 Byte 3 … n-2 Byte n-1 Byte n
[PCB+CID] SC Data 0x9000 successful

00 00
[0A 01] 90 [XX XX … XX] 0x6400 no card answer (TimeOut)

The green labeled PCB, CID filed is only available if the card is switched to ISO14443-4. The data field can be
empty. The status code in this sample is the success code.

Sample for Mifare+ commands with the GENERIC INTERFACE Command APDU.

Sample for switching to ISO14443 part 4 (RATS):
Send FFA00005080100F3000064E08100
Receive 00000C757784024D46505F454E479000

Sample for first authentication:
Send FFA000050C0100F30000640A017002900000
Receive 00000A0190XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX9000

Sample for SL1 authentication:
Send FFA00005090100F300006476049000
Receive 000090XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX9000

January 11, 2010 Page 25 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

6.5 Close Generic Session
Continue the driver activity for card tracking and close the generic command session. Take the card control
from the application to the driver.

Table 5 CLOSE GENERIC SESSION Command APDU
Command Class INS P1 P2 Lc Data In Le

Close Session 0xFF 0xA0 0x00 0x07 0x03 0x01 0x00 0x02 -

Table 6 INIT GENERIC SESSION Command Output
Data Out
SW1 SW2 = 0x9000

After the generic interface session the session must be closed. Do never forgot this step.

The application must send the following APDU with SCardTransmit:

Send FFA0000703010002
Receive 9000

Page 26 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

7 CardMan 5x21-CL Keys

OMNIKEY CardMan 5x21-CL has a set of built-in cryptographic keys, some of which are implemented in
volatile memory and others in non-volatile memory.

7.1 Key Numbering Scheme
Cryptographic keys are referenced by a unique key number between 0x00 and 0xFE. Each key number refers
to a key of pre-defined length for a specific card type. For cards such as MIFARE and iCLASS, multiple key
numbers are reserved.

The OMNIKEY key number is used to determine key usage, key length, and to map the reader key to the third
party card key.

Examples:

CardMan Key number ‘0A’ refers to the 6 byte MIFARE key 10, KMIF10

CardMan Key number ‘24’ refers to the 8 byte iCLASS Default key for application 1 on page 1

Refer to [MIFARE] and [ICLASS] for detailed documentation of these third-party keys and contact your card
manufacturer in case you need information about any key values.

Keys Numbers and Key Names

Key Number Key Name Key Length Key Type Memory
Type

6-byte (MIFARE) keys

‘00’ to ‘1F’
6 bytes Card Key KMIF0 (MIFARE Key 0) to KMIF31 (MIFARE Key

31)
Non-
volatile
memory

8-byte (iClass) keys

‘20’
KIAMC (Any Inside Application Master key) 8 bytes Card Key Non-

volatile
memory

‘21’
KMDC HID Master Key
(KMD0, Kd for application 1 of page 0 on Book
0 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘22’
RFU
(previously used for HID Master Key KMDO)

8 bytes Card Key Non-
volatile
memory

‘23’
KMC0 (Default Master Key for application 2 of
page 0 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘24’
KMD1 (Default Master Key for application 1 of
page 1 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘25’
KMC1 (Default Master Key for application 2 of
page 1 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘26’
KMD2 (Default Master Key for application 1 of
page 2 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘27’
KMC2 (Default Master Key for application 2 of
page 2 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

January 11, 2010 Page 27 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Page 28 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

Key Number Key Name Key Length Key Type Memory
Type

‘28’
KMD3 (Default Master Key for application 1 of
page 3 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘29’
KMC3 (Default Master Key for application 2 of
page 3 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2A’
KMD4 (Default Master Key for application 1 of
page 4 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2B’
KMC4 (Default Master Key for application 2) of
page 4 of iCLASS card

8 bytes Card Key Non-
volatile
memory

‘2C’
KMD5 (Default Master Key for application 1 of
page 5 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2D’
KMC5 (Default Master Key for application 2 of
page 5 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2E’
KMD6 (Default Master Key for application 1 of
page 6 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2F’
KMC6 (Default Master Key for application 2 of
page 6 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘30’
KMD7 (Default Master Key for application 1 of
page 7 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘31’
KMC7 (Default Master Key for application 2 of
page 7 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘32’
KMTD (Master Transport Key for application 1 of
iCLASS card, key stored at chip production)

8 bytes Card Key Non
volatile
memory

‘33’
KMTC (Master Transport Key for application 1 of
iCLASS card, key stored at chip production))

8 bytes Card Key Non-
volatile
memory

‘34’
KMD0B1 (Default Master Key for application 1 of
page 0 on Book 1 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘35’..’7F’ RFU
16-byte keys

‘80’
KCUR (Custom read key) 16 bytes Reader Key Non-

volatile
memory

‘81’
KCUW (Custom write Key) 16 bytes Reader Key Non-

volatile
memory

‘82’
KENC (Card data encryption key) 16 bytes Card Key Non-

volatile
memory

24- byte keys
‘B0’..’CF’ RFU

January 11, 2010 Page 29 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

Key Number Key Name Key Length Key Type Memory
Type

32-byte keys
‘D0’..’DF’ RFU

0xF0 to 0xFF are volatile keys
0xF0 KVAK (volatile application key) 8 bytes Card Key Volatile

memory
‘F1’...‘FF’ RFU

Note: OMNIKEY 5x21 firmware version 5.00 is the first to support all keys listed above. Readers with firmware
version 1.03 and 1.04 only support key numbers 0x20 and 0xF0.

Key number 0x21 to Key number 0x31 (except 0x22) are the default keys for iCLASS cards. Key number 0x32
and 0x33 are the default transport keys for Inside cards.
Keys 0x21 and 0x22 are stored in the reader. The remaining non-volatile keys 0x23 to 0x33 are stored in the
registry.

Key 0x21 cannot be updated. Updates of key 0x22 are RFU and currently not supported.

Contactless Developer Guide - 5321-903_A.1.20

7.2 Key Container and Slots
The CardMan 5x21-CL key container is organized in fixed-length key slots. These key slots allow easy usage
of cryptographic keys. It is not necessary that the host application knows anything about the physical storage
location. Load keys into a key container by referring to a key slot and a key number. Key access and usage are
managed by the reader firmware. For security purposes, keys can only be used and updated, but they can
never be read. As an additional security measure, keys are diversified with two 16-byte secret keys before
being committed to a key container.

Key slot properties are available for advanced users. This feature is designed to ensure proper use of a single
key in case there are more keys than key slots.

Key Container of CardMan 5x21-CL Reader

Key Slot
(KS)

Number
KS

Length
Default

Stored Key
Name

Default
Stored Key

Number
Remarks

‘00’ 12 KMIF0 ’00’
…. 12 ------- ----
‘1F’ 12 KMIF31 ’1F’

No key slot information is available for
these key slots. Retrieving information will
return SW1SW2 “6300”.

‘20’ 16 KCUR ’80’
’21’ 16 KCUW ’81’
’22’ 16 KENC ’82’
’23’ 08 KIAMC ’20’
'24’ 08 KMDO ’22’
’25’ 08 KMDC ’21’

Key slot information is available.

’26’ 08 KVAK ’F0’
No key slot information is available for
these key slots. Retrieving information will
return SW1SW2 “6300”.

’27’ 08 KMC0 ’23’
’28’ 08 KMD1 ’24’
’29’ 08 KMC1 ’25’
’2A’ 08 KMD2 ’26’
’2B’ 08 KMC2 ’27’
’2C’ 08 KMD3 ’28’
’2D’ 08 KMC3 ’29’
’2E’ 08 KMD4 ’2A’
’2F’ 08 KMC4 ’2B’
’30’ 08 KMD5 ’2C’
’31’ 08 KMC5 ’2D’
’32’ 08 KMD6 ’2E’
’33’ 08 KMC6 ’2F’
’34’ 08 KMD7 ’30’
’35’ 08 KMC7 ’31’
’36’ 08 KMTD ’32
’37’ 08 KMTC ’33’
’38’ 08 KMD0B1 ’34’

Key slot information is available.

Page 30 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

7.3 Key Update Rules
The following table lists update rules for keys being used by the reader system. Key updates relate to keys
residing in the OMNIKEY reader. Those keys are used for authentication of the reader to the card or to encrypt
data written to the card.

Key
Name

Key
Number

Key
Update Rule Description

KMIF0
to
KMIF31

’00’ to ‘1F’

Always 6-byte MIFARE keys can be loaded/updated by using the
SCardCLWriteMIFAREKeyToReader function of
synchronous API. A key sent to reader may be plain or
3-DES encrypted with the KCUR or KCUW

KIAMC ‘20’

Standard Mode:
- Always

Secured Mode:
- Read session
- Write session

8-byte iCLASS key to authenticate any iCLASS
application. The default value for this key is the Inside
contactless card transport key Kd0 (authenticates to
application 1 on page 0).

KMDC ’21’

Never Authenticates the reader to the HID application of an
iCLASS card for read access. This authentication
requires secure mode operation. Write access to the HID
application is not allowed.

KMDO ’22’ Never RFU

KCUR ’80’

Secured mode:
- read session
- write session

Authenticates the reader to establish a secured session.
Grants the application read access. This key can also be
used to encrypt the MIFARE key in
SCardCLWriteMIFAREKeyToReader function.

KCUW ’81’

Secured mode:
- read session

Authenticates the reader to establish a secured session.
Grants the application read-only access. This key can
also be used to encrypt the MIFARE key in
SCardCLWriteMIFAREKeyToReader function.

KENC ’82’

Secured mode:
- read session
- write session

Encrypts data written to the card or decrypts data read
from the card. Requires read/update INS bits to be set
accordingly. If INS bits are set for DES, the first 8 bytes
of KENC are used. For 3-DES operations, all 16 bytes are
used.

KVAK ’F0’

Standard Mode: -
Always

Secured Mode:
- Read session
- Write session

Authenticates any application on the iCLASS card. The
sequence is as follows:
Load KVAK with the 8-byte value, Authenticate with KVAK
Load KVAK with new 8-byte value, Authenticate with KVAK.

KMC0

to

KMC7

KMD1

to

KMD7, and
KMD0B1

’23‘ to ’31’
and ‘34’

Never iCLASS default keys for free memory zones. May be
used to authenticate to any non-HID application on an
iCLASS card. This allows quick evaluation of iCLASS
cards without knowledge of the default keys.

KMTD -
KMTC,

’32’
’33’

Never iCLASS transport keys set by the card manufacturer.

January 11, 2010 Page 31 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

8 Standard Communication with iCLASS Card

Standard communication means there is no authentication of the host application (for example Microsoft
Windows) to the OMNIKEY 5x21-CL. Unless the card itself has built-in mechanisms for confidential
communication, the channel between host and reader is unprotected, exposing the connecting USB cable to
eavesdropping.

8.1 APDU Structure for Standard Communication
iCLASS cards are supported through ISO7816 compliant APDU exchange. Command and response APDUs
are exchanged through the OMNIKEY proprietary API function SCardCLICCTransmit residing in the OMNIKEY
synchronous API.

Command APDU (through pucSendData)

CLA INS P1 P2 Lc Data in Le
‘80’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ … ‘xx’ ‘xx’

Response APDU (through pucReceivedData)

Data out SW2 SW1
‘xx’ … ‘xx’ ‘xx’ ‘xx’

8.2 Commands Available in Standard Communication Mode
Card commands are referred to by their respective instruction (INS) byte as part of a command APDU sent by
SCardCLICCTransmit. The following table lists all INS values supported by the OMNIKEY CardMan 5x21-CL
reader in standard communication mode.

List of Supported INS bytes (APDU Commend Set)

Instruction (INS) Description Command Type
‘82’ Load Key reader command
‘C4’ GetKeySlotInfo reader command
‘A6’ Select Page card command
‘88’ Authenticate card command
‘B0’ Read card command
‘D6’ Update card command

Page 32 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

8.2.1 Select Page (Card Command)
iCLASS comes with various card configurations. Every iCLASS card has at least one page (page 0). Cards
such as the iCLASS 2x8KS, provide additional pages 1 to 7. In addition to pages, iCLASS cards also have
books. To select a certain memory block on an iCLASS card, you need to know its book number, page
number, and block number.

Select the appropriate page and book before authentication to an iCLASS card application for performing
read/write access. In the context of iCLASS cards, an application area and memory area are synonymous.

Currently, only cards with more than 16 kbit of total memory capacity have an additional book. The following
section describes parameters of the Select Page command.

Command Syntax

CLA ‘80’

INS ‘A6’

P1 ‘00’: Select the only page of iCLASS 2KS or single page of 16KS
’01’: Select page of multi-page iCLASS 16KS (8x2KS) or 32KS

P2

Specifies whether data is requested from the card
’00’: no data requested
’04’: request for 8-byte card serial number
’08’: request for 8-byte configuration block data
’0C’: request for 8-byte application issuer data

LC for P1=’00’: standard mode: empty; secured mode: ‘00’
for P1=’01’: ‘01’

Data Field for P1=’00’: empty
for P1=’01’: book number and page number according to format below

Le for P2=’00’: empty
for P2>’00’: ’00’ or ‘08’

Data Field Format for Page Number & Book Selection

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0
Book number
0: for 1st book
1: for 2nd book on iCLASS 32KS

0 Page number 0-7

Page Selection Examples:

Data Field Description
‘03’ select page 3 of an iCLASS 8x2KS card
‘03’ select page 3 of book 0 of an iCLASS 32KS (book 0: 8x2KS) card
‘13’ select page 3 of book 1 of an iCLASS 32KS (book 1: 8x2KS) card
‘10’ select book 1 (16KS) of an iCLASS 32KS
‘00’ select book 0 (16KS) of an iCLASS 32KS

January 11, 2010 Page 33 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

Response Syntax

Data Field empty or
8 byte card response, in case of a previous request for such data

SW1 SW2 status word as described below
‘90’ ‘00’ Success
‘62’ ‘83’ requested page number does not exist
‘6C’ ‘xx’ wrong length Le. xx returns the number of data available

Reference section 5.2.1-Card Access through SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Note: If the application resides on page 0 of an 8x2KS iCLASS card or on the single page of an iCLASS 16KS
or iCLASS 2KS card, the Select Page command is not necessary. It is helpful to call Select Page anyway, in
case you need to retrieve the card serial number, configuration block, or application issuer data.

8.2.2 Load Key
Load Key command loads an iCLASS card key and stores it in reader memory, thus preparing the reader for
subsequent card authentication commands. OMNIKEY 5x21 can only store one such key at a time.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘82’

P1 ‘xx’ specifies key location according to byte format below

P2 ‘xx’ key number (see Key Numbering Scheme)

LC ‘08’

Data Field 8 byte key

Le Empty

P1 - Format for Key Location

b7 b6 b5 b4 b3 b2 b1 b0 Description

x 0: card key
1: reader key

 x 0: plain transmission
1: secured transmission (not available)

 x 0: key loaded in volatile memory
1: key loaded in non-volatile memory.

 x 0: RFU (non-zero value returns error)

 0 0 0 0 b0..b3 must be set to 0

Note: Only load a key in volatile memory once during any given card session. Unless you need to authenticate
to any additional application with a different key, you can use the stored key throughout the session for more
than one authentication.

Page 34 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

Response Syntax

Data Field empty
SW1 SW2 status word as described below
‘90’ ‘00’ success
‘63’ ‘00’ no further information given (warning)
‘63’ ‘81’ loading/updating is not allowed
‘63’ ‘82’ card key not supported
‘63’ ‘83’ reader key not supported
‘63’ ‘84’ plaintext transmission not supported
‘63’ ‘85’ secured transmission not supported
‘63’ ‘86’ volatile memory is not available
‘63’ ‘87’ non-volatile memory is not available
‘63’ ‘88’ key number not valid
‘63’ ‘89’ key length is not correct

Reference section 5.2.1-Card Access through SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

January 11, 2010 Page 35 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

8.2.3 GetKeySlotInfo (Reader Command)
The GetKeySlotInfo reader command provides access to key slot status information.

OMNIKEY CardMan 5x21-CL provides a set of predefined key slots in the key container. Easily load key slots
with keys by referring to the key number (for example, key reference) rather than loading the actual 8 byte key
by value. The slot for key storage is automatically determined by the reader system.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘C4’

P1 ‘00’

P2 ‘xx’ key slot number (see section 7.2 Key Container and Slots)

LC standard mode: empty; secured mode: ‘00’

Data Field 8 byte key

Le ‘00’ or ‘02’

Response Syntax

Data Field 2 byte key information
see Key Information and Key Access Option below

SW1 SW2 status word as described below
‘90’ ‘00’ success
‘63’ ‘00’ no further information given (warning)
‘63’ ‘01’ key slot does not contain valid key or empty key slot
‘62’ ‘83’ requested key slot does not exist
‘6C’ ‘xx’ more data available than requested; xx returns available data size

Reference section 5.2.1-Card Access through SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Key Information (contained in Data Field)

b15 b14 B13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

RFU
Key

Access
Option

key number according to
7.1-Key Numbering Scheme
’FF’ means empty key slot

Key Access Option (contained in b9, b8 of Data Field)

b9 B8 Key Access Option
0 0 key can be loaded for any plaintext and secured transmission.
0 1 key can only be loaded in OMNIKEY proprietary secured mode
1 0 key can never be loaded
1 1 RFU

Page 36 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

8.2.4 Authenticate (Card Command)
The Authenticate command authenticates the reader system to the card application of the selected page. For
iCLASS authentication, this command requires previous page selection.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘88’

P1 ‘xx’ key type:
’00’: Inside Contactless or iCLASS debit key Kd (i.e. application 1)
’01’: Inside Contactless or iCLASS credit key Kc (i.e. application 2)
’60’: MIFARE Key A
’61’: MIFARE Key B
’FF’: key type unknown or not necessary
all other values: RFU

P2 ‘xx’ key number (see chapter 7.1-Key Numbering Scheme)

LC length of address
iCLASS: standard mode: empty; secured mode: ‘00’
other cards: ‘01’ or ‘02’ (max 2 address bytes supported)

Data Field iCLASS: empty
other cards: one or two byte address

Le empty

Response Syntax

Data Field empty

SW1 SW2 status word as described below
‘90’ ‘00’ success
‘63’ ‘00’ no further information given (warning)
‘69’ ‘83’ authentication cannot be done
‘69’ ‘84’ reference key not useable
‘69’ ‘88’ key number not valid

Reference section 5.2.1-Card Access through SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

January 11, 2010 Page 37 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

8.2.5 Read (Card Command)
The Read command reads a data block from the given block address. For the iCLASS card, only eight bytes
can be read at a time. For information about available blocks reference [HID_ICLASS]. This command requires
previous page selection and, depending on the iCLASS card configuration, authentication to the iCLASS
application.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘B0’

P1 MSB of block number

P2 LSB of block number

LC standard mode: empty; secured mode: ‘00’

Data Field empty

Le ‘00’ or ‘08’
’20’: if supported by card, up to 32 bytes can be returned

Response Syntax

Data Field 8 byte block returned from the card (iCLASS)
32 bytes returned if card supports it

SW1 SW2 status word as described below
‘90’ ‘00’ success
‘62’ ‘81’ part of returned data may be corrupted
‘62’ ‘82’ end of file reached before reading all requested bytes
‘69’ ‘81’ command incompatible
‘69’ ‘86’ command not allowed
‘6A’ ‘81’ function not supported
‘6A’ ‘82’ file not found or addressed block or byte does not exist
‘6C’ ‘xx’ more data available than requested; xx returns available data size, typically ‘08’

Reference section 5.2.1-Card Access through SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Note: Reading blocks without valid authentication or trying to read data without read permission, will set all
returned data to ‘FF’.

Page 38 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

8.2.6 Update (Card Command)
The Update command writes a data block to a given block address. For the iCLASS card, only eight bytes can
be written at a time. For further information about available blocks reference [HID_ICLASS]. This command
requires previous page selection and, depending on the iCLASS card configuration, authentication to the
iCLASS application.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘D6’

P1 MSB of block number

P2 LSB of block number

LC ‘08’ (iCLASS only allows 8 bytes per call)

Data Field 8 bytes to be written to card

Le empty

Response Syntax

Data Field empty

SW1 SW2 status word as described below
‘90’ ‘00’ success
‘62’ ‘82’ end of file reached before writing all Lc bytes
‘65’ ‘81’ memory failure (unsuccessful writing).
‘69’ ‘81’ command incompatible
‘69’ ‘86’ command not allowed
‘6A’ ‘81’ function not supported
‘6A’ ‘82’ file not found or addressed block or byte does not exist

Reference section 5.2.1-Card Access through SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Note: Updating without authenticating to the corresponding application returns ‘6400‘ Card Execution Error.

January 11, 2010 Page 39 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Page 40 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

8.3 Communication in Standard Mode rd Mode

Establish Context

Connect Card

Select Page

Load Key

Authenticate Application

Yes

Read/Update

Further
Read/Update

No

Disconnect Card

Same
Application

Yes

Same Page

No

Yes

No

 1

2

3

4

5

6

7

8

Release Context 9

 Contactless Developer Guide - 5321-903_A.1.20

9 Secured Communication with the iCLASS Card
For a desktop smart card reader, such as the OMNIKEY CardMan 5x21-CL, security mainly evolves from the
following scenarios:

• Authenticity between the host application and the reader
• Confidentiality of data transmitted through USB cable

• Integrity of transmitted data
• Authenticity between the reader and the card
• Confidentiality and integrity of the RF transmission
• Confidentiality of data stored in cards

OMNIKEY CardMan 5x21-CL reader provides an end-to-end security scheme to fulfill the security
requirements listed above.

Note: Secured mode communication requires reader firmware version 5.00 or greater.

9.1 Multi-Step Approach to a Secure Card Reader System

9.1.1 Authenticity between Host and Reader
Authenticity between host and reader is enforced with a mutual authentication scheme that requires a 16-byte
transport key (Kcur or Kcuw) and a proprietary algorithm. Only initiate sessions upon successful completion of
this one-step mutual authentication process.

Note: This feature prevents unauthorized reader usage. Additional information about this process is available
under NDA.

9.1.2 Confidentiality of USB Data Exchange
CardMan 5x21-CL has a built-in mechanism that protects against eavesdropping and replay attacks on USB
traffic. The data transmitted through a USB cable is triple DES encrypted with the Session Key (Ks). This key is
generated during the mutual authentication process. It is unique for every session. Therefore, traffic recorded in
one session cannot be replayed in another session.

9.1.3 Integrity of Transmitted Data
Data transmitted between host and reader is digitally signed with an eight-byte Message Authentication Code
(MAC) which is appended to the data. This is done to detect any inconsistencies that may occur due to
erroneous or modified data.

9.1.4 Authenticity Between Reader and Card
iCLASS cards allow authentication of the reader system to the card. This is done by proving knowledge of a
shared secret, the iCLASS card application key KIAMC or KMDC . Applications that are protected with such a key
require successful reader authentication before read/write access to card data is granted.

9.1.5 Integrity of the Radio Frequency (RF) Transmission
Data integrity of an RF transmission with an iCLASS card is enforced with a two-byte checksum (based on
CRC algorithm).

9.1.6 Confidentiality of the RF Transmission
The CardMan 5x21-CL supports an important feature to guarantee confidentiality: it encrypts data before
writing data to the card and decrypts data read from the card. Confidentiality in this context means that data is
securely transmitted between the card and the reader without an eavesdropper reading the data in plaintext.

January 11, 2010 Page 41 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

9.1.7 Authentication of the Host for Read/Write Session
CardMan 5x21-CL contains two keys KCUR and KCUW that are used to control access to read and write functions
respectively. Initiating a reader session with KCUR makes it a read-only session thus blocking functions that
write to the card. Starting a session with KCUW enables the reader for both read and write access.

Note: This is part of a host-to-reader authentication mechanism, not to be confused with reader-to-card
authentication enforced by the card itself.

9.1.8 Protection against Known Attacks
Replay Attacks:

The data header contains a datagram that is different with every APDU exchange. The reader
ensures that no frame is repeated.

Plain Text Attack:
For some critical commands, there is a built-in delay to prevent a plain text attack. If there is any error
in the data header or signature, the session is immediately terminated. One can commence
communication only after starting a new session.

9.2 APDU Structure for Secured Communication
CardMan 5x21-CL provides a unique mechanism to secure the communication channel using OMNIKEY’s
proprietary cryptographic envelope which protects the transmitted data from eavesdroppers.

Secured communication requires additional steps to prepare data before sending it to the reader system and
after receiving data from the reader. The underlying triple DES algorithm requires a block size that is a multiple
of 8. Therefore, the datagram has a built-in padding scheme. Authenticity of the plaintext is enforced with an 8
byte signature.

Command Syntax

CLA INS P1 P2 Lc Input Datagram (sent to the reader) Le
‘84’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ‘xx ... xx’ ‘xx’

Input Datagram (sent to the reader)

Data Header
(DH)

Size of INS
related data

LcINS

INS related
data

(INSData)

Padding
Bytes
(PB)

Signature

‘xxxxxxxx’ ‘xx’ ‘xx ... xx’ ’80 ... 00’ ‘xx ... xx’
4 bytes 1 byte LcINS bytes P bytes 8 bytes

P = number of padding bytes to satisfy (4+1+ LcINS+P) is multiple of 8.

Response Syntax

 3-DES{KS, ()}

Output Datagram (received from the reader) SW2 SW1
‘xx ... xx’ ‘xx’ ‘xx’

Page 42 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

Output Datagram (received from the reader)

P = number of padding bytes to satisfy (4+1+ LcINS+P) is multiple of 8.

Note: If no valid session key Ks is available due to a previous error during the Start Session command, all
datagram bytes are set to ‘00’. Therefore the host would receive ’00 ... 00’ || SW1 || SW2 as response from the
reader.

9.2.1 Data Header (DH)
Data Header

Byte 0 Byte 1 Byte 2 Byte 3
Host data header (HDH) Reader data header (RDH)

When the host system sends a Host Data Header (HDH) to the reader, the reader must acknowledge the HDH
in its response by returning the 1’s complement of the original HDH. This allows the host to check whether it
receives data originating from the correct data header.

When the reader sends a Reader Data Header (RDH) to the host, the host must acknowledge the RDH in its
next request by sending the 1’s complement of the preceding RDH. This allows the reader to check whether
the data sent by the host follows a previous reader response.

9.2.2 Signature Generation
The CardMan 5x21-CL signature generation is based on an 8-byte Message Authentication Code (MAC). The
MAC value is calculated by taking the last 8 bytes of a DES CBC encrypted data block consisting of DH,
LcINSData, INSData, and padding bytes. Kcur or Kcuw are used as signing keys.

The following steps describe how padding is applied to create a data block that can be signed using a DES
CBC operation:

• Append '80' to the right of the data block.

• If the resulting data block length is a multiple of eight, no further padding is required.
• Do zero (‘00’) padding until the data block size reaches a multiple of eight.

9.2.3 Session Key Generation
The session key Ks is derived from an 8-byte random number and the MAC transmitted to the reader during
Start Session. For the Start Session command, LcINSData equals 8 (length of the random number) and
INSData contains the 8-byte random number.

All secured communication calls following a successful session key negotiation are 3DES encrypted with Ks.

Data Header (DH)
Size of Card
Response

LcR

Card
Response

Padding
Bytes
(PB)

Signature

‘xxxxxxxx’ ‘xx’ ‘xx ... xx’ ’80 ... 00’ ‘xx ... xx’
4 bytes 1 byte n bytes P bytes 8 bytes

 3-DES{KS, ()}

January 11, 2010 Page 43 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

9.2.4 Proprietary Host and Reader Datagram Example

3 DES (KCUR .)

3DES (KS,)

Data Header LcINSData

HDH RDH
HDH 0 08
Rnd Rnd

INSData

xxxxxxxxx

Rnd8

Padding

800000

MAC

xxxxxxxx

Session Key (Ks) = Rnd 8 + MAC

Step 1 : Start session

Data Header LcR

HDH RDH

~HDH0 RDH0 00

Rnd

Padding

800000

MAC

xxxxxxxx

Host Reader

3 DES (KS ,)

Data Header LcINSData

HDH RDH
HDH n ~ RDH n-1 xx

Rnd

INSData

xxxxxxxxx

Padding

80xxxxx

MAC

xxxxxxxx

Step n : Any other command

3DES (KS,)

Data Header LcR

HDH RDH

~HDHn RDHn xx

Rnd

Padding

80 xxxxx

MAC

xxxxxxxx

Note: This is a read-only session because KCUR was used in the start session command. If KCUW were used to
start the session, both read and write operations would be allowed. The HID application is always read-only.

Page 44 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

9.3 Instructions (INS) for Secured Communication
Card commands are referred to by their respective instruction (INS) byte as part of a command APDU sent by
SCardCLICCTransmit. CardMan 5x21-CL with firmware version 5.00 or greater supports the following secured
mode instructions:

List of INS bytes for Secured Communication

Instruction (INS) Description Command Type
‘C4’ GetKeySlotInfo reader command
‘72’ Manage Session reader command
‘82’ Load Key reader command
‘A6’ Select Page card command
‘88’ Authenticate card command
‘B0’ Read card command
‘D6’ Update card command
‘24’ Update Card Key card command

In the following sections the command structure is described. LcINS and INSData are part of the OMNIKEY
proprietary structure.

Notes
Secured mode and Standard Mode use different formatting of P1, bit 7 and bit 6 of the Read/Update
commands (INS 0xB0 and 0xD6 respectively). Use the two LSBits of P1 to control the encryption of data read
or updated.

Lc must always be transmitted in secured mode.

January 11, 2010 Page 45 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

9.3.1 Manage Session (Reader Command)

The Manage Session command is used to start or end a session.

Command Syntax

CLA ‘84’

INS ‘72’

P1 ‘00’: start session
’01’: end session
other values: RFU
P1 = ‘00’ (start session) P1 = ’01’ (end session) P2
‘00’: start read only session
’01’: start read/write session

‘00’

Lc ‘08’: challenge size ‘00’

Data Field 8-byte random number (challenge) empty

Le empty

Response Syntax

Data Field empty

SW1 SW2 status word as described below
‘90’ ‘00’ success

Reference section 5.2.1-Card Access through SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Note: A session is automatically ended if the card is removed.

9.3.2 Select Page (Card Command)
Except for the CLA byte ‘84’, the syntax for Select Page in secured mode is identical to the command
described in 8.2.1-Select Page (Card Command).

9.3.3 Load Key (Reader Command)
Except for the CLA byte ‘84’, the syntax for Load Key in secured mode is identical to the Load Command
described in 8.2.2-Load Key.

9.3.4 Authenticate (Card Command)
Except for the CLA byte ‘84’, the syntax for Authenticate in secured mode is identical to the command
described in 8.2.4-Authenticate (Card Command).

Page 46 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

9.3.5 Read (Card Command)

Except for the CLA byte ‘84’, and the additional formatting rules for P1 described below, the syntax for the
Read command in secured mode is identical to the command described in 8.2.5-Read (Card Command).

P1 Formatting for Secured Mode

b7 b6 b5 – b0 Description
0 0 Plain
0 1 DES Encryption
1 0 Triple DES Encryption

Block Nr. MSB

1 1 RFU

Data needs to be decrypted with the KENC to get the plaintext data.

9.3.6 Update (Card Command)

Except for the CLA byte ‘84’, and additional formatting of P1 described below, the syntax for the Update
command in secured mode is identical with the command described in 8.2.6-Update (Card Command).

P1 Formatting for Secured Mode

b7 b6 b5 – b0 Description
0 0 Plain
0 1 DES Encryption
1 0 Triple DES Encryption

Block Nr. MSB

1 1 RFU

Data is encrypted with KENC before storing it on the card.

9.3.7 GetKeySlotInfo (Reader Command)

Except for the CLA byte ‘84’, the syntax for 7.3.7 GetKeySlotInfo in secured mode is identical to the command
described in 8.2.3-GetKeySlotInfo (Reader Command).

January 11, 2010 Page 47 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

9.3.8 Update Card Key

The Update Card Key command is used to change KC or KD.

Command Syntax

CLA ‘84’

INS ‘24’

P1 ‘00’: New key for KD (application 1)
’01’: New key for KC (application 2)
other values: RFU

P2 Key number where new key is stored.

Lc ‘00’: empty

Data Field empty

Le empty

Response Syntax

Data Field empty

SW1 SW2 status word as described below
‘90’ ‘00’ Success
'65' '81' Memory failure (unsuccessful writing)

'69' '81' ‘86’ Command incompatible
Command not allowed

'6A' '81' Function not supported

Reference section 5.2.1-Card Access through SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

The sequences for using UpdateCardKey command are as follows:

1. If the desired change of the key is not in page 0, the page has to be selected by a Select
Page command.

2. Load transport/old key by Load Key command.

3. Authenticate the card with the old key (key number as used for Load Key in step 2).

4. Load new key by Load Key command.

5. Now send the Update CardKey command with specific P2 (New Key number as loaded in
step 4).

Note: Only update KD (application 1) after authentication with KD, and only update KC (application 2) after
authentication with KC.

CAUTION: Do not write directly to address 3, 4 where KC and KD are stored, this will destroy the keys.

Page 48 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

January 11, 2010 Page 49 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

9.4 Communication at Secured Mode

Same Page

No

Establish Context

Connect Card

Select Page

Authenticate Application

Yes

Read/Update

Further
Read/Update

No

Disconnect Card

Same
Application

Yes
No

1

2

3

5

6

8

9

4
Start Session

End Session

10

Release Context

Load Key Yes

11

7

Contactless Developer Guide - 5321-903_A.1.20

9.5 Session at Secured Mode APDUs Example

KCUR = ‘A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’, Read-only session

Host Reader

1. Start Session

CLA INS P1 P2 Lc OMNIKEY Proprietary Input Datagram (sent to reader) CLEAR
‘84’ ‘72’ ‘00’ ‘00’ ‘18’ ‘1422’ ‘9D2B’ ‘08’ ‘4A895F20C2D30B5E’ ‘800000’ ‘9E5052819C5A8D3C’

 HDH
(Rnd)

RDH
(Rnd) LcINS Rnd8 (INSData) Padding Signature

 DH MAC
 ‘FD274CE840FA9AD139E4FC2923653A88743CB5986DB4F7A0’
 OMNIKEY Proprietary Input datagram (sent to reader) ENCIPHERED

Signature = DESEn {(A0A1A2A3A4A5A6A7),(14229D2B084A895F20C2D30B5E800000)}

 = 8A8D430D608714FE9E5052819C5A8D3C

9E5052819C5A8D3C (last eight bytes of DES encryption)

Enciphered datagram = 3-DESEn{

(A0A1A2A3A4A5A6A7A8A9AAABACADAEAF),
(14229D2B084A895F20C2D30B5E8000009E5052819C5A8D3C) }

= FD274CE840FA9AD139E4FC2923653A88743CB5986DB4F7A0 (24 byte input datagram)

SessionKey (KS) = Rnd8 + MAC = 4A895F20C2D30B5E9E5052819C5A8D3C

OMNIKEY Proprietary Output Datagram (received from reader) SW1SW2

A04B84A4DE515FD8A9D40DFFE703FBF1 9000

‘EBDD’ E00C 00 800000 E367401E2DA8FACB

~HDH RDH(Rnd) LcR Padding Signature

DH MAC

3-DESDec{(4A895F20C2D30B5E9E5052819C5A8D3C),(A04B84A4DE515FD8A9D40DFFE703FBF1) }

 = EBDDE00C00800000E367401E2DA8FACB

 Signature = DESEn{(4A895F20C2D30B5E),(EBDDE00C00800000) }

 = E367401E2DA8FACB

Note: An open source library to accomplish all security protocols introduced in the secured communication
mode is available from OMNIKEY upon request.

Page 50 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

2. Authenticate HID Application

CLA INS P1 P2 Lc OMNIKEY Proprietary Send Datagram

84 88 00 21 10 B3F1 1FF3 00 800000 B50318C9E871191A

 HDH (Rnd) ~RDH LcINS Padding Signature

 DH MAC

 B5FD83E756CA03DE54FBEA5546E8867D

 Proprietary Data

Signature = DESEn{(4A895F20C2D30B5E),(B3F11FF300800000)}

= B50318C9E871191A

Proprietary Data = 3-DESEn{(4A895F20C2D30B5E9E5052819C5A8D3C),(
B3F11FF300800000B50318C9E871191A) }

 = B5FD83E756CA03DE54FBEA5546E8867D

OMNIKEY Proprietary Response Datagram SW1SW2

78A10C4FCC7EBC2C516354A56C4C7818 9000

4C0E 7D55 00 800000 D2D0B0B4E34EBDBE

~HDH RDH(Rnd) LcR Padding Signature

DH MAC

3-DESDec{(4A895F20C2D30B5E9E5052819C5A8D3C),
(78A10C4FCC7EBC2C516354A56C4C7818) }
 = 4C0E7D5500800000D2D0B0B4E34EBDBE

Signature = DESEn{(4A895F20C2D30B5E),(4C0E7D5500800000) }
 = D2D0B0B4E34EBDBE

Note: An open source library to accomplish all security protocols introduced in the secured
communication mode is available from OMNIKEY upon request.

January 11, 2010 Page 51 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

3. Read Block 6

CLA INS P1 P2 Lc OMNIKEY Proprietary Send Datagram Le
84 B0 00 06 10 6762 82AA 00 800000 F63AB82BED09B039 08

 HDH
(Rnd) ~RDH LcINS Padding Signature

 DH MAC
 2FABB8F0533E742383F4FE9045142859
 Proprietary Data

Signature = DESEn{(4A895F20C2D30B5E),(676282AA00800000)}
 = F63AB82BED09B039

Proprietary Data = 3-DESEn{(4A895F20C2D30B5E9E5052819C5A8D3C),
 (676282AA00800000F63AB82BED09B039) }
 = 2FABB8F0533E742383F4FE9045142859

OMNIKEY Proprietary Response Datagram SW1
SW2

AA401E3D849B881044FF4D847977D9070C589338C097F163 9000

989D 2A94 08 000000000000E414 800000 3101DDB971C922FF

~HDH RDH(Rnd) LcR Response Data Padding Signature

DH MAC

3-DESDec { (4A895F20C2D30B5E9E5052819C5A8D3C),
(AA401E3D849B881044FF4D847977D9070C589338C097F163)}

 = 989D2A9408000000000000E4148000003101DDB971C922FF

Signature = DESEn{(4A895F20C2D30B5E),(989D2A9408000000000000E414800000) }
 = 1CDF21DCA31BABDB3101DDB971C922FF
 = 3101DDB971C922FF (last 8-byte block)

Note: An open source library to accomplish all security protocols introduced in the secured communication
mode is available from OMNIKEY upon request.

Page 52 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

January 11, 2010 Page 53 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

10 Reading ISO15693

10.1 Products
This document describes the commands for ISO 15693 support of OMNIKEY 5x21.

Applicable readers are:

OMNIKEY 5321 USB
OMNIKEY 6321 USB
OMNIKEY 5321 CL
OMNIKEY 5321 CR

Applicable drivers and operating system:

MS Windows Drivers Version 1.2.0.6

10.2 Tags
The following tags and functions are covered by this document

• iCODE (see table below)

• LRI 64
• SLC Montalbano Technology
• Texas Instruments Tag-it1
• Infineon (MY-D, MY-D light)2
• All ISO 15693-3 compliant Tags with support for functions marked as optional.

(Include tag functions Inventory, Stay Quiet …etc)

Support for ICODE tags

Card Type Chip Type Support

ICODE 1 SL2 ICS30 01 UID, (Not ISO15693 Part3 compliant)

ICODE SLI SL2 ICS20 Full

ICODE EPC SL2 ICS10 Not supported

ICODE UID SL2 ICS11 Not supported

ICODE UID-TOP SL2 ICS12 Not supported

ICODE SLI-S / SLI-S HC SL2 ICS53 / ICS54 Full support except GetSecurityStatus
because not supported by card, for further
information read the datasheet [iCODE SL2]
please

1 Tag-it Standard and Pro do only support READ BINARY, UPDATE BINARY, GET DATA PICC memory
and LOCK, Applicable at MS Windows Drivers Version 1.2.0.14
2 Applicable at MS Windows Drivers Version 1.2.0.14

Contactless Developer Guide - 5321-903_A.1.20

10.3 Commands

10.3.1 Get Data
This Get Data command will retrieve information about the inserted command depending on the inserted card.
It can be used for kind of contactless cards.

GET DATA Command APDU

Command Class INS P1 P2 Lc Data In Le
Get Data 0xFF 0x30 XX 0x00 - - XX

P1/P2 denotation

P1 P2 Description
0x00 0x00 RFU
0x01 0x00 RFU
0x02 0x00 AFI of a ISO 15693 card is returned if supported
0x03 0x00 DSFID of a ISO 15693 card is returned if supported
0x04 0x00 PICC memory size is returned if supported
0x05 0x00 IC reference is returned if supported
0x06 0x00 EAS sequence (only for I-CODE SLI cards) is returned ,

Note : EAS sequence is a bit stream which is sent LSB first !!!

GET DATA Command Output

Data Out
Data + SW1 SW2
Le = 0x00, this means: Return full length of the data

SW1SW2 Examples:

 SW1 SW2 Meaning
Warning ‘62’ ‘82’ End of data reached before Le bytes (Le is greater

than data length).
Error ‘6A’ ‘81’ Function not supported
 ‘6C’ ‘xx’ Wrong length (wrong number Le; ‘XX’ encodes the

exact number) if Le is less than the available UID
length)

Page 54 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

January 11, 2010 Page 55 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

10.3.2 Put Data
Use this command to write system information to a contactless card.

Put Data Command APDU

Command Class INS P1 P2 Lc Data In Le
Put Data 0xFF 0x30 0x00 0x01 3 + N See table -

Put Data bytes

Byte 1 Byte 2 Byte 3 Byte 4..n
Version
0x01

Flag1 Flag2 Data

Put Data Flag denotation for version 0x01

Flag1 Flag2
0x00 0x00 RFU
0x01 0x00 RFU
0x02 0x00 AFI of a ISO 15693 card is written if supported
0x03 0x00 DSFID of a ISO 15693 card is written if supported
0x04 0x00 RFU
0x05 0x00 RFU
0x06 0x00 EAS bit is written (for I-Code SLI) cards. Data field consists of one byte (bit 0 is the new

value of the EAS bit)3
0x00 0x01 Stay quiet (the PICC does not answer any more any response), currently not supported

The following table introduces examples of SW1SW2 and their meaning.

Put data Command Error Codes

 SW1 SW2 Meaning
'62' '82' Block or field is locked

Warning
'63' '00' No information is given

‘64’ ‘00’ Execution error4
‘6A’ ‘81’ Function not supported

'82' Security status not satisfied Error '69'

‘86’ Command not allowed, no ISO15693-3 chip

3 EAS is supported by MY-D; EAS must be enabled in AFI byte (bit 2)!
4 The chip does not support the optional ISO15693-3 command type.

Page 56 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

10.3.3 Lock
Use this command to lock the memory area of a contactless card. 5

Lock APDU

Command Class INS P1 P2 Lc Data In Le
Lock 0xFF 0x30 0x00 0x02 3 + N See table -

Lock data bytes

Byte 1 Byte 2 Byte 3 Byte 4..n
Version
 0x01

Flag1 Flag2 Data

Lock Flag denotation for version 0x01

Flags1 Flags2 Data1 Data2
0x00 0x00 Data field contains in 2 bytes the block number Address (MSB) Address (LSB)
0x01 0x00 RFU - -
0x02 0x00 AFI of a ISO 15693 card is locked if supported - -
0x03 0x00 DSFID of a ISO 15693 card is locked if supported - -
0x04 0x00 RFU - -
0x05 0x00 RFU - -
0x06 0x00 EAS bit (only for I-CODE SLI cards) is locked - -

The following table introduces SWISW2 examples.

Lock Command Error Codes

 SW1 SW2 Meaning
'62' '82' Block or field already locked Warning
'63' '00' No information is given
‘6A’ ‘81’ Function not supported

'82' Security status not satisfied Error '69'
'86' Command not allowed, no ISO15693-3 chip

5 Command is not supported by MY-D light; to set and get security you can use the generic command.
Reference the Infineon MY-D light specification and OK5x21_ISO15693_GenericCardCommands.doc

January 11, 2010 Page 57 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

10.3.4 Get Security Status
Use this command to retrieve the security status of some memory area of a contactless card.6

Get Security Status Command APDU

Command Class INS P1 P2 Lc Data In Le
Get Security Status 0xFF 0x30 0x00 0x03 3 + N See table XX

Get Security Status data bytes

Byte 1 Byte 2 Byte 3 Byte 4..n
Version
0x01

Flag1 Flag2 Data

Get Security Status Flag denotation for version 0x01

Flag1 Flag2 Data1 Data2
0x00 0x00 Block Address

(MSB)
Address
(LSB)

0x01 0x00 RFU - -
0x02 0x00 AFI (only supported for MY-D, not MY-D light) - -
0x03 0x00 DSFID (currently not supported) - -
0x04 0x00 RFU - -
0x05 0x00 RFU - -
0x06 0x00 EAS (not supported by I CODE-SLI) - -

Le codes the number of bytes for which the security status should be retrieved.

6 Command is not supported by MY-D light; to set and get security you can use the generic command.
Reference the Infineon MY-D light specification and OK5x21_ISO15693_GenericCardCommands.doc

Page 58 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

For each address/block number/page number, retrieved is one byte with the security status.

I CODE SLI Data 1, Data 2 contains the block number (0 – 27). Each block has 4 bytes.
LRI 64 Data 1, Data 2 contains the block number (0 – 14). Each block has 1 bytes.
SLC
Montalbano
Technology

Data 1, Data 2 contains the block number (0 – 63). Each block has 8 bytes.

MIFARE 1k

Data1, Data2 contains the block number (0 - ((16 * 4) –1))
Note: MIFARE 1k has 16 sectors. Each sector has 4 blocks.
Each block has 8 bytes.
(Get Security Status currently not supported)

MIFARE 4k

Data1, Data2 contains the block number (0 - ((32 * 4 + 16*4) –1))
Note: MIFARE 4k has 32 sectors which have 4 blocks and 16 sectors
which have 16 blocks.
Each block has 8 bytes.
(Get Security Status currently not supported)

MIFARE Ultra light Data1, Data 2 contains the page number (0 – 15). Each page has 4 bytes.
(Get Security Status currently not supported)

MIFARE Mini

Data1, Data2 contains the block number (0 - ((5 * 4) –1))
Note: MIFARE Mini has 5 sectors . Each sector has 4 blocks.
Each block has 8 bytes.
(Get Security Status currently not supported)

MY-D Data 1, Data 2 contains the block number.
(SRF55V10P: 0 – 247, SRF55V02P: 0 – 55) Each block has 4 bytes.

The following describes the security status byte.

Type of card B7 B6 B5 B4 B3 B2 B1 B0
ISO15693-3
compliant chip x x x x x x x Write access bit

MIFARE 1K x x x x x C1 C2 C3
MIFARE 4K x x x x x C1 C2 C3
MIFARE Ultra
light

x x x x x x x Lock bit

MIFARE Mini x x x x x C1 C2 C3
X ….. no meaning

The following table describes examples of SW1SW2 and their description:

Get Security Status Error Codes

 SW1 SW2 Description
Warning '63' '00' No information is given

‘64’ ‘00’ Execution error7
‘6A’ ‘81’ Function not supported

'82' Security status not satisfied
Error

'69'
‘86’ Command not allowed, no ISO15693-3 chip

7 The chip does not support the optional ISO15693-3 command type.

January 11, 2010 Page 59 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

10.3.5 Read Binary Command
If the Le field contains only bytes set to '00', then all the bytes until the end of the file shall be read within the
limit of 256 for a short Le field or 65 536 for an extended Le field8.

Read Binary Command APDU

Command Class INS P1 P2 Lc Data in Le
Read Binary 0xFF 0xB0 Address

MSB
Address
LSB

 - - XX

Read Binary Command Output

Data Out
Data + SW1 SW2

Read Binary Command Error Codes

 SW1 SW2 Meaning
'81' Part of returned data may be corrupted.

Warning
'62'

'82' End of file reached before reading expected number of bytes.

'81' Command incompatible.
'82' Security status not satisfied.

'69'

‘86’ Command not allowed.
'81' Function not supported. '6A'
'82' File not found / Addressed block or byte does not exist.

Error

'6C' 'XX' Wrong length (wrong number Le; 'XX' is the exact number).

Le must be a multiple of the block size !

8 Currently are extended APDU’s only supported for Texas Instruments Tag-it and Infineon MY-D.

Page 60 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

10.3.6 Update Binary Command
The Lc field contains the length of the field Data in field. For a short Lc field the data length is
1 <= Lc < 256 and for a extended Lc field9 the data length is 1 <= NC < 65 536.

Update Binary Command APDU

Command Class INS P1 P2 Lc Data in Le
Read Binary 0xFF 0xD6 Address MSB Address LSB XX Data -

Update Binary Command Output

Data Out
SW1 SW2

Update Binary Command Error Codes

 SW1 SW2 Meaning
'81' A part of the returned data may be corrupted.

Warning
'62'

'82' End of file reached before writing Lc bytes.

'65' '81' Memory failure (unsuccessful writing).
'81' Command incompatible.
'82' Security status not satisfied.

'69'

‘86’ Command not allowed.
'81' Function not supported.

Error

'6A'
'82' File not found / Addressed block or byte does not exist.

Lc must be a multiple of the block size!

9 Currently are extended APDU’s only supported for Texas Instruments Tag-it and Infineon MY-D.

 Contactless Developer Guide - 5321-903_A.1.20

10.3.7 Update Single Byte Command
Use this command to write a single byte within a block. Currently, this command is only supported for Infineon
MY-D.

Update Single Byte Command APDU

Command Class INS P1 P2 Lc Data In Le
Put Data 0xFF 0xD7 0x00 0x00 6 See table -

Update Single Byte Data bytes

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Version
0x01

Block Address
MSB

Block Address
LSB

Offset within
Block MSB

Offset within
Block LSB

Data to be
written

The offset must be less than block size.

Update Single Byte Command Output

Data Out
SW1 SW2

Update Single Byte Command Error Codes

 SW1 SW2 Meaning
'65' '81' Memory failure (unsuccessful writing).
'69' '82' Security status not satisfied.

'81' Function not supported.
Error

'6A'
'82' File not found / Addressed block or byte does not exist.

January 11, 2010 Page 61 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

11 OMNIKEY 5321 PAY Application Interface

The OMNIKEY 5321 PAY has an EMVCo Contactless Level 1 Type Approval. The application interface (API) is
compliant to PC/SC 2.01.

11.1 PayPassTM card transactions
For card detection the application can use the SCCardStatusChange() function. If an PAY card is present the
SCARD_STATE_MUTE status flag must be checked. If the SCARD_STATE_MUTE status flag is 1 then the
PCD has found more than one card in the operation volume (collision detected). If this status flag is zero, then
the application can continue with the card transactions, e.g. Select PPSE (Proximity Payment System
Environment).

For transactions with an PAY Card the application use the SCacrdTransmit() function.

See Appendix A2.10 EMVCo Contactless Level 2 Transactions.

If all transactions are complete the application must disconnect the card with the dwDisposition value
SCARD_UNPOWER_CARD. This is necessary for the correct card removal procedure of the PCD.

11.2 LED and Buzzer control
For LED and buzzer control the device provide an PC/SC IO-C0ntrol. This IO-Control can be used for the
activation of OMNIKEY 5321 PAY read indication. The OMNIKEY 5321 PAY can use the PayPassTM
light/LED method for read indication and the additional tree indicators must light the sequence. An audio
indication (buzzer) can be used to indicate the success tone. For more information about the light/LED read
indication method, see the relevant ongoing specification from EMVCo and MasterCard® PayPassTM.

Table 7: Parameter for IO-Control SIGNAL
SCardControl Parameter Description

CM_IOCTL_SIGNAL dwControlCode
UCHAR ucCommand
UCHAR ucParam1
UCHAR ucParam2

+0 PPARAM_SIGNAL lpInBuffer

UCHAR ucRFU[10]
nInBufferSize >= 3

Empty lpOutBuffer
>= 0 nOutBufferSize
0 lpBytesReturned

Table 8: Summary of SIGNAL Commands

Command Value Description
PAYPASS_SIGNAL 0x20 Complete PayPassTM Audio and Visual Sequence
PAYPASS_SIGNAL_MAINLED 0x21 Control of Main LED
PAYPASS_SIGNAL_ADDLED 0x22 Control of additional PayPassTM LED 2-4
ACOUSTIC_SIGNAL_BEEPER_ON 0x10 Control of PayPassTM Audio Tone ON
ACOUSTIC_SIGNAL_BEEPER_OFF 0x11 Control of PayPassTM Audio Tone OFF

Page 62 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

11.2.1 SIGNAL Command – PayPass Signal
This command clone the PayPassTM Audio and Visual Sequence for the event "card read complete
successful", according to MasterCard® PayPassTM Terminal Implementation Guide.

Table 9: Parameter for SIGNAL Command – PayPass Signal
Parameter Description

Command Param1 Param2 RFU
lpInBuffer

20 loudness -- --

nInBufferSize >= 2

lpOutBuffer Empty

nOutBufferSize >= 0

lpBytesReturned 0

11.2.2 SIGNAL Command – PayPass Signal MAIN LED
The reader main LED (bicolour red/green) is by default under control of firmware and driver. In any cases of
MasterCatrd® PayPass TM terminal implementation an application control of this LED is required. With this
comman the application can assume the LED control.

Table 10: Parameter for SIGNAL Command – PayPass Signal MAIN LED
Parameter Description

Command Param1 Param2 Param3 RFU
lpInBuffer

21
00 – CCID ESC command

LED status
01 – USB Pipe Control

00 – by default
03 – application controlled

--

nInBufferSize >= 4

lpOutBuffer Empty

nOutBufferSize >= 0

lpBytesReturned 0

For LED control before receiving the PICC answer the application must use Param1 = 01 as,
USB Pipe Control Command.

Param2 is coded as 0000 00xx (bit 2…7 is RFU)

Summary of Param2
LED status Value Description

1 bicolour green LED on
Bit 0

0 bicolour green LED off

1 bicolour red LED on
Bit 1

0 bicolour red LED off

For details see the code snippet in Appendix A2.12 PayPassTM Signal MAIN LED

January 11, 2010 Page 63 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

11.2.3 SIGNAL Command – PayPass Signal Additional LEDs
For represent the status of the contactless payment application the MasterCatrd®
PayPass TM terminal implementation require three additioal LEDs for visual indication, e.g. contactless
application process was completed successfully. This three LEDs are exclusive for the application. Driver and
firmware du not use thes tree additional LEDs.

Table 11: Parameter for SIGNAL Command – PayPass Signal Additional LEDs
Parameter Description

Command Param1 Param2 Param3 RFU
lpInBuffer

22
00 – CCID ESC command

LED status
01 – USB Pipe Control

-- --

nInBufferSize >= 3

lpOutBuffer Empty

nOutBufferSize >= 0

lpBytesReturned 0

Param2 is coded as 0000 0xxx (bit 3…7 is RFU)

Summary of Param2
LED status Value Description

1 green LED2 on
Bit 0

0 green LED2 off

1 green LED3 on
Bit 1

0 green LED3 off

1 green LED4 on
Bit 2

0 green LED4 off

For details see the code snippet in Appendix A2.13 PayPassTM Signal Additional LEDs

11.2.4 SIGNAL Command – PayPass Signal Tone
No commad parameters are required. The command code 0x10 (ACOUSTIC_SIGNAL_BEEPER_ON) turn on the
buzzer and the command code 0x11 (ACOUSTIC_SIGNAL_BEEPER_OFF) turn off the buzzer. See the Table 8:
Summary of SIGNAL Commands.

For details see the code snippet in Appendix A2.14 PayPassTM Signal Tone

11.3 Switch-over the operating mode
The OMNIKEY 5321 PAY require the EMVCo Level 1 PDC processing. After the driver is installed, the PCD
(Proximity Coupling Device) do this by default. The Reader can also be used in standard ISO mode. For
dynamic changing between RFID-ISO mode and EMVCo L1 mode the driver support an IO-Control, described
in this chapter. See also the code snipped in A2.11 Set RFID operating mode.

Note: The operating volume is optimized for EMVCo L1. This is not compliant to the requirements of ISO /
ICAO.

Page 64 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

Table 12: Parameter for IO-Control Set RFID Operation Mode
SCardControl Parameter Description

CM_IOCTL_SET_OPERATION_MODE dwControlCode
0x10 OPERATION_MODE_RFID_ISO

+0 bOperationMode lpInBuffer
0x11 OPERATION_MODE_RFID_PAYPASS

>= 1 nInBufferSize
Empty lpOutBuffer
>= 0 nOutBufferSize
0 lpBytesReturned

If the reader is switched to ISO mode, the complete functionality of an standard OMNIKEY 5x21 can be used.

Note: Currently the EMVCo type approval is confined to the firmware version 1.75. This firmware version do not
support the read and write operations of iClass cards.

For an static usage in ISO mode the reader behavior can also switched with the following registry entry:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CardMan\CardInterface]

"ContactlessDefault"=dword:00000000

January 11, 2010 Page 65 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

12 CardMan 5125 Registry Settings
The following registry entry specifies the used card format. See Figure 6 - Registry Editor.

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CardMan]

ProxFormat=dword:000000ff

Figure 6 - Registry Editor

The following table shows allowed registry key entries. If there is a void value, the driver works like
“ProxFormat”=dword:00000000 is entered. (= no decoding)

Prox Format Value
Decimal Card Format Data Content

0 Wiegand Raw -
1 H10301 26 bit (FAC+CN)
2 H10302 37 bit (CN)
4 H10304 37 bit (FAC+CN)
20 H10320 32 bit clock/data card
100 Corp 1000 35 bit (CIC+CN)
254 AUTO Automatic mode
255 CUSTOMER Customer defined

Page 66 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

12.1 Legend / Additional Information
FAC …………….. Facility Code
CN …………….. Card Number
CIC …………….. Customer Identifier Code

Get detailed information about the card formats from www.hidglobal.com.

The structure of the decoded ATR depends on the card format and the used registry key. The next table shows
in which way the card information is mapped into the ATR depending to the ProxFormat value.

CARD
FORMAT FC / CIC CN

Registry Key
(hex format) Decoded ATR

H10301 AAAA BBBBBBB 01 3B 06 01 AA AA BB BB BB

H10302 - BBBBBBBBBBBB 02 3B 07 02 BB BB BB BB BB BB

H10304 AAAAA BBBBBB 04 3B 07 04 0A AA AA BB BB BB

H10320 - BBBBBBBB 14 3B 05 14 BB BB BB BB

Corp 1k AAAA BBBBBBBB 64 3B 07 64 AA AA BB BB BB BB

12.2 Automatic Mode
If the value of the ProxFormat key is set to 254 (0xfe), the detection of the card format and the conversation of
the ATR is done automatically by the driver. The function of the automatic mode is restricted because of many
different card formats.

Example: The only difference between the two 37bit formats H10302 and H10304 is that H10304 contains a
facility code in the ATR and the H10302 not. Therefore, it is impossible to differentiate the two formats on the
basis of the ATR.

The automatic mode supports and decodes the following formats correctly:

H10301 H10302
H10320 Corp 1000

January 11, 2010 Page 67 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

www.hidglobal.com

Contactless Developer Guide - 5321-903_A.1.20

12.3 Windows Custom Mode
Because of many different card formats, the driver provides an option to decode the ATR through custom
settings. To enable this function set the ProxFormat key to 255 (0xff). This chapter explains in which way the
driver is decoding the ATR by setting additional registry keys.

Split the bit-data-stream into up to 15 data-fields. Each data field is labeled with a letter (A, B …) and is defined
with a StartBit and the BitLength.

The StartBit specifies the position in the bit-data-stream, starting with the LSb. In the case, the first bit of the
data-field is the LSb, while the value of StartBit must be 0.

Example:

The data-fields are converted into BCD format next and mapped into the ATR in the sequence A B C …. etc.

Page 68 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

12.3.1 H10301 format example
26 bit code (24 information bits)

Card w/o RegKey ProxFormat = 255

FC=1 CN=12345 3B 05 00 02 02 60 73 3B 06 01 00 01 01 23 45

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat]

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat\A]

“StartBit”=dword00000011

“BitLength”=dword:00000008

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat\B]

“StartBit”=dword00000001

“BitLength”=dword:00000010

PAAAAAAAABBBBBBBBBBBBBBBBP

10000000100110000001110011

P Parity Bit
A Facility Code (FAC)
B Card Number (CN)

Both data fields converted into BCD format:

 00000001 -> 00 01 (4 digits, defined by H10301 format)

0011000000111001 -> 01 23 45 (6 digits, defined by H10301 format)

January 11, 2010 Page 69 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

12.3.2 Example: H10302 format
37bit code (35 information bits, CN)

Card w/o RegKey ProxFormat = 255

CN=1 3B 06 00 00 00 00 00 02 3B 07 02 00 00 00 00 00 01

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat]

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat\A]

“StartBit”=dword:00000001

“BitLength”=dword:000000023

PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP

0000000000000000000000000000000000010

P Parity Bit
A Card Number (CN)

Data field converted into BCD format:

00000000000000000000000000000000001 -> 0 00 00 00 00 01

(11 digits, defined by H10302 format)

Page 70 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

12.3.3 H10304 Format Example
37bit code (35 information bits, FC+CN)

Card w/o RegKey ProxFormat = 255
FC=65535 CN=524287 3B 06 00 0F FF FF FF FF 3B 07 04 06 55 35 52 42 87

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat]

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat\A]

“StartBit”=dword00000014

“BitLength”=dword:00000010

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat\B]

“StartBit”=dword00000001

“BitLength”=dword:00000013

PAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBP

0111111111111111111111111111111111111

P Parity Bit
A Facility Code (FAC)
B Card Number (CN)

Both data fields converted into BCD format:

1111111111111111 -> 6 55 35 (5 digits, defined by H10304 format)

1111111111111111111 -> 52 42 87 (6 digits, defined by H10304 format)

January 11, 2010 Page 71 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

12.3.4 Corp 1000 Format Example
35bit code (32 information bits, FC+CN)

Card w/o RegKey ProxFormat = 255
FC=4095 CN=2 3B 06 00 03 FF E0 00 05 3B 07 64 40 95 00 00 00 02

 [HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat]

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat\A]

“StartBit”=dword00000015

“BitLength”=dword:0000000C

[HKLM\SYSTEM\CurrentControlSet\Control\CardMan\CustomProxFormat\B]

“StartBit”=dword00000001

“BitLength”=dword:00000014

PPAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBP

01111111111111000000000000000000101

P Parity Bit
A Facility Code (FAC)
B Card Number (CN)

Both data fields converted into BCD format:

111111111111 -> 40 95

(4 digits, defined by Corp1000 format)
00000000000000000010 -> 00 00 00 02

(8 digits, defined by Corp1000 format)

Page 72 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

12.4 Linux & Mac OS X Custom Mode
Because Linux and Mac OS X based operating systems do not have a registry, the Prox specific settings have
to be done in an extra file.

This file is named cmrfid.ini and it is copied to the /etc/ directory (the directory is the same on Mac OS X and
Linux platform) during driver installation. Edit this file with any text editor.

Note: You need root permissions to edit this file.

By default the ProxFormat mode is set to automatic:

 [ProximityOptions]
ProxFormat = 254 (0xfe)

To enable the custom mode function on Linux, set the ProxFormat key to 255 (0xff). Additionally, add entries
regarding the needs of the used card. In the following image, a H10304 format card was added.

First the ProxFormat value in the [ProximityOptions] section has to be changed to 255 (custom mode):

[ProximityOptions]
; ProxFormat = 254 (= automatic mode)
ProxFormat = 255

Then, add the entries for the format options. For Windows based operating systems, create registry keys as
mentioned in the sections above. For Linux you need to create additional format sections for the used card
(H10301 in this example):

 [CustomProxFormat-A]
StartBit = 11
BitLength = 8
 [CustomProxFormat-B]
StartBit = 1
BitLength = 10

For any other card reference the different examples above. The settings are the same for Windows; the only
difference is that the settings have to be done in the cmrfid.ini file.

January 11, 2010 Page 73 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

Appendix A - Application Programming

A1 Sample Project
The following C++ sample project is part of the synchronous API which can be downloaded from our website at
www.hidglobal.com/omnikey.

If you choose the default installation settings, sample code is found in:
c:\omnikey\samples\contactlessdemovc.

Sample code for Visual Basic is also available and found in: c:\omnikey\samples\contactlessdemovb.

The sample uses the OMNIKEY synchronous API and demonstrates how to select a reader, connect a card,
and access either a MIFARE or iCLASS card.

Note: Integrate MIFARE cards through non-proprietary, PC/SC 2.0 compliant function calls.

A1.1 Overview
From the Connected Reader list (top-left corner), select the reader. The list contains all readers available to
the smart card resource manager. When a card is inserted, displayed are the ATR, UID and Card Name fields.
From the Reader Related Function frame, select the functions with or without a card in the RF field.

Only use the MIFARE Functions using Sync API frame when a MIFARE card is in the field. Use the ISO
7816/iCLASS/PCSC 2.01 frame for APDU exchange with a CPU card (asynchronous card) in the field.

Each processed command produces output in the output log. Clear the log with the Refresh Output Screen
button. The return status of the last executed function is shown in the Last Operation Status frame.

Close the application with the Exit button.

Figure 7: Sample Program Screen

Page 74 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

http://www.hidglobal.com/omnikey

 Contactless Developer Guide - 5321-903_A.1.20

A1.2 Reader Related Functions
Reader related functions do not require a card in the field.

To store a MIFARE key, complete the following:

• Define a key number to determine where to store the key.
• Select plain or secured as the mode of the key transmission. For secured transmissions, use

transmission key number 0x80 or 0x81.
• Enter the key in hex string format to the text field MIFARE Key. For plain transmissions enter a 6 byte,

12 hex digit value (no spaces). For secured transmission enter an 8 byte value.
• Click on the Write MIFARE Key to Reader button to load the key to reader memory.

A1.3 MIFARE Functions Using Synchronous API
Before using the MIFARE Functions using Sync API, authenticate the card. (MIFARE UltraLight does not
need authentication).

To authenticate to a block of the card complete the following:

• In the field Block Nr, enter the authentication block number.

• In the field Access Option choose to supply a key number or plain key.
• In the field Authentication Mode choose Mode A or B.
• Press the Authenticate button.

Upon successful authentication, you can read and write data blocks and use the increment and decrement
functions.

A1.4 PC/SC 2.01
Enter an APDU according to PC/SC 2.01 to access storage cards such as MIFARE cards directly without using
the OMNIKEY proprietary synchronous API.

A1.5 ISO 7816 - APDU
Enter an APDU for your CPU (asynchronous) card and send the APDU the same way as an ISO7816 contact
card.

A1.6 iCLASS Standard Mode
Present an iCLASS card to the reader RF field, and send APDUs directly to the card, see section 8-Standard
Communication with iCLASS Card. This is an easy way of experimenting with the available functions.

January 11, 2010 Page 75 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

A2 Code Examples
This section lists coding examples for a PC/SC 2.01 compliant implementation.

A2.1 Getting the Card UID (PC/SC 2.01)
The following function retrieves the Unique card ID (UID) currently connected to the card through the air
interface. Use the UID as the card serial number. The UID is available for every ISO 14443 A/B or ISO 15693
compliant cards. It does not matter whether the card is a CPU or storage card. This makes GetUID the ideal
candidate for Hello Card type applications. If you do not have access to application keys, the UID serves as a
valuable identifier allowing card lookup on a backend database.

BOOLEAN GetUID(UCHAR *UID, int &sizeofUID)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xCA;//INS
 ucByteSend[2] = 0x00;//P1
 ucByteSend[3] = 0x00;//P2
 ucByteSend[4] = 0x00;//Le
 ulnByteSend = 5;
 printf("\nRetrieving the UID..........");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 sizeofUID = dwRecvLength-2;
 memcpy(UID,ucByteReceive,sizeofUID);
 return TRUE;
}

Page 76 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

A2.2 Loading a MIFARE Key (PC/SC 2.01)
The following code loads a MIFARE key to the reader. The key is stored in non-volatile memory. Once loaded,
it remains available throughout the reader session.

BOOLEAN LoadKey(UCHAR ucKeyNr, UCHAR *ucKey, UCHAR ucKeyLength)
{
 ucByteSend[0] = 0xFF; //CLA
 ucByteSend[1] = 0x82; //INS
 ucByteSend[2] = 0x20; //P1 card key, plain transmission, non-volatile memory
 ucByteSend[3] = ucKeyNr; //P2 key number for MIFARE could be 0x00 to 0x31)
 ucByteSend[4] = ucKeyLength;//Lc
 memcpy(ucByteSend+5,ucKey, ucKeyLength);
 ulnByteSend = 5+ucKeyLength;
 printf("\nLoading Key to the reader..........");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength -2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

A2.3 MIFARE 1K/4K Authenticate (PC/SC 2.01)
The following code demonstrates how to authenticate a MIFARE card.
BOOLEAN Authenticate(UCHAR BlockNr, UCHAR ucKeyNr, UCHAR ucKeyType)
{
 ucByteSend[0] = 0xFF; // CLA
 ucByteSend[1] = 0x88; // INS
 ucByteSend[2] = 0x00; // P1, MIFARE Block Number MSB, for MIFARE it is always
0x00
 ucByteSend[3] = BlockNr; // MIFARE Block Number LSB
 ucByteSend[4] = ucKeyType; // P3
 ucByteSend[5] = ucKeyNr;
 ulnByteSend = 6;
 printf("\nAuthenticating");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

January 11, 2010 Page 77 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

A2.4 MIFARE 1K/4K Write (PC/SC 2.01)

BOOLEAN UpdateBinary(UCHAR BlockNr, UCHAR *ucDataToWrite, UCHAR ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xD6;//INS
 ucByteSend[2] = 0x00;//P1, MIFARE Block Number MSB, for MIFARE it is always 0x00
 ucByteSend[3] = BlockNr;//MIFARE Block Number LSB
 ucByteSend[4] = ucDataLenght;
 memcpy(ucByteSend+5,ucDataToWrite, ucDataLenght);
 ulnByteSend = 5+ucDataLenght;
 printf("\nUpdating Block");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;

}

A2.5 MIFARE 1K/4K Read (PC/SC 2.01)

BOOLEAN ReadBinary(UCHAR BlockNr, UCHAR *ucDataRead, UCHAR &ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xB0;//INS
 ucByteSend[2] = 0x00;//P1, MIFARE Block Number MSB, for MIFARE it is always 0x00
 ucByteSend[3] = BlockNr;//MIFARE Block Number LSB
 ucByteSend[4] = 0x10;//Le
 ulnByteSend = 5;
 dwRecvLength = 255;
 printf("\nReading Block");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 ucDataLenght = (unsigned char)dwRecvLength -2;
 memcpy(ucDataRead,ucByteReceive,ucDataLenght);
 return TRUE;
}

Page 78 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

A2.6 MIFARE 1K/4K Increment (OMNIKEY Proprietary API)

BOOLEAN Increment(UCHAR BlockNr, UCHAR *ucDataTobeIncremented, UCHAR ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xD4;//INS
 ucByteSend[2] = 0x00;//P1, MIFARE Block Number MSB, for MIFARE it is always 0x00
 ucByteSend[3] = BlockNr;//MIFARE Block Number LSB
 ucByteSend[4] = ucDataLenght;
 memcpy(ucByteSend+5,ucDataTobeIncremented, ucDataLenght);
 ulnByteSend = 5+ucDataLenght;
 printf("\nIncrementing Block");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

A2.7 MIFARE 1K/4K Decrement (OMNIKEY Proprietary API)

BOOLEAN Decrement(UCHAR BlockNr, UCHAR *ucDataTobeDecremented, UCHAR ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xD8;//INS
 ucByteSend[2] = 0x00;//P1, MIFARE Block Number MSB, for MIFARE it is always 0x00
 ucByteSend[3] = BlockNr;//MIFARE Block Number LSB
 ucByteSend[4] = ucDataLenght;
 memcpy(ucByteSend+5,ucDataTobeDecremented, ucDataLenght);
 ulnByteSend = 5+ucDataLenght;
 printf("\nDecrementing Block");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength- 2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
}
 return TRUE;
}

January 11, 2010 Page 79 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

A2.8 MIFARE Emulation Mode (OMNIKEY Proprietary API)
With the following code switch the MIFARE Emulation Mode on and off.
#define CM_IOCTL_SET_RFID_CONTROL_FLAGS SCARD_CTL_CODE(3213)

DWORD dwActiveProtocol;
DWORD dwControlFlag;

BYTE InBuffer[16];
BYTE OutBuffer[16];
DWORD dwInBufferSize ;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD *Mask = (DWORD *)InBuffer;
DWORD *Value = (DWORD *)InBuffer+1;
DWORD dwControlCode = CM_IOCTL_SET_RFID_CONTROL_FLAGS;

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

*Mask = 0x00000004;
*Value = dwControlFlag & *Mask;
dwInBufferSize = 8;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

if (SCard_Status == SCARD_S_SUCCESS)
{
 if(dwControlFlag)
 sprintf(szText,"MIFARE\t");

else
 sprintf(szText,"T=CL\t");

}
else
{
 sprintf(szText,"IO Cntrol error\r");
}

// The card is disconnected after changing the MIFARE emulation mode
do
{
 sReaderState.szReader = szReaderName;
 sReaderState.dwCurrentState = SCARD_STATE_EMPTY;
 sReaderState.dwEventState = SCARD_STATE_EMPTY;
 SCardGetStatusChange(hContext,50,&sReaderState,1);
}
while((sReaderState.dwEventState & SCARD_STATE_PRESENT) == 0);

Page 80 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

A2.9 iCLASS Select Page (OMNIKEY Proprietary API)
The following code selects page 0x01 of a 8x2KS iCLASS card and returns the card serial number.

//Select page 0x02 of a 8x2KS iCLASS card
UCHAR ucDataSend[7] = {0};
ULONG ulNoOfDataSend = 7;
UCHAR ucReceivedData[64] = {0};
ULONG ulNoOfDataReceived = 64;

ucDataSend [0] = 0x80 //CLA, standard mode
ucDataSend [1] = 0xA6 //INS
ucDataSend [2] = 0x01 //P1
ucDataSend [3] = 0x04 //P2, return card serial number
ucDataSend [4] = 0x01 //Lc
ucDataSend [5] = 0x01 //Page number
ucDataSend [6] = 0x08 //Le

SCard_Status = SCardCLICCTransmit(hCard,ucDataSend,ulNoOfDataSend,
 ucReceivedData,&ulNoOfDataReceived);
if(SCard_Status!= SCARD_S_SUCCESS)
{
 printf("Error in SCardCLICCTransmit, with error code %8X", SCard_Status);
 exit(-1);
}

A2.10 EMVCo Contactless Level 2 Transactions
The following code snippet shows a typical OMNIKEY 5321 PAY transaction loop.
SCARDCONTEXT hContext;
SCARDHANDLE hCard;
SCARD_READERSTATE sReaderState;
CHAR* szReaderName;
DWORD dwShareMode;
DWORD dwPreferredProtocols;
DWORD dwActiveProtocols;
UCHAR ucByteSend[256];
DWORD dwNByteSend;
UCHAR abByteReceive[256];
DWORD dwRecvLength;
DWORD SCard_Status;

UCHAR abSelectPPSE[20] = {0x00,0xA4,0x04,0x00, // CLA,INS,..
 0x0E, // Lc
 0x32,0x50,0x41,0x59,0x2E,0x53,0x59, // Data field
 0x53,0x2E,0x44,0x44,0x46,0x30,0x31,
 0x00}; // Le

// TODO: Code for PAY application

do
{
 // wait for card
 do
 {
 sReaderState.szReader = szReaderName;
 sReaderState.dwCurrentState = SCARD_STATE_EMPTY;
 sReaderState.dwEventState = SCARD_STATE_EMPTY;
 SCardGetStatusChange(hContext,30,&sReaderState,1);
 Sleep(20);
 }
 while((sReaderState.dwEventState & SCARD_STATE_PRESENT) == 0);

 if ((sReaderState.dwEventState & SCARD_STATE_MUTE) != 0)
 {

January 11, 2010 Page 81 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

 // Card present, Collision detected

 // TODO: Code for PAY application

 // wait for remove card
 do
 {
 sReaderState.szReader = szReaderName;
 sReaderState.dwCurrentState = SCARD_STATE_PRESENT;
 sReaderState.dwEventState = SCARD_STATE_PRESENT;
 SCardGetStatusChange(hContext,30,&sReaderState,1);
 Sleep(20);
 }
 while((sReaderState.dwEventState & SCARD_STATE_EMPTY) == 0);
 continue;
 }

 // TODO: Code for PAY application

 // Connect card

 dwShareMode = SCARD_SHARE_SHARED;
 dwPreferredProtocols = SCARD_PROTOCOL_T1;

 SCard_Status = SCardConnect(hContext,
 szReaderName,
 dwShareMode,
 dwPreferredProtocols,
 &hCard,
 &dwActiveProtocols);

 // TODO: Code for PAY application

 memcpy(abByteSend, abSelectPPSE, 20);
 dwNByteSend = 20;
 do
 {
 dwRecvLength = 256;
 SCard_Status = SCardTransmit (hCard,
 SCARD_PCI_T1,
 abByteSend,
 dwNByteSend,
 NULL,
 abByteReceive,
 &dwRecvLength);

 // TODO: Code for PAY application

 }
 while(/*TODO: Code for PAY application*/);

 // now disconnect the card
 SCard_Status = SCardDisconnect(hCard, SCARD_UNPOWER_CARD);
 // TODO: Code for PAY application

 // wait for remove card
 do
 {
 sReaderState.szReader = szReaderName;
 sReaderState.dwCurrentState = SCARD_STATE_PRESENT;
 sReaderState.dwEventState = SCARD_STATE_PRESENT;
 SCardGetStatusChange(hContext,30,&sReaderState,1);
 Sleep(20);
 }
 while((sReaderState.dwEventState & SCARD_STATE_EMPTY) == 0);
 // TODO: Code for PAY application
}
while(/*TODO: Code for PAY application*/);
// TODO: Code for PAY application

Page 82 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

A2.11 Set RFID operating mode
The following code snipped shows a sample for setting the operating mode:
#define CM_IOCTL_SET_OPERATION_MODE SCARD_CTL_CODE (3107)
#define OPERATION_MODE_RFID_ISO 0x10
#define OPERATION_MODE_RFID_PAYPASS 0x11

BYTE InBuffer[4];
BYTE OutBuffer[4];
DWORD dwInBufferSize;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD dwControlCode = CM_IOCTL_SET_OPERATION_MODE;

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));
*InBuffer = OPERATION_MODE_RFID_PAYPASS
dwInBufferSize = 1;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl (hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

A2.12 PayPassTM Signal MAIN LED
The following code snipped shows how the reader main LED can be used under control of an application.
#define CM_IOCTL_SIGNAL SCARD_CTL_CODE (3058)
#define PAYPASS_SIGNAL_MAINLED 0x21

BYTE InBuffer[4];
BYTE OutBuffer[4];
DWORD dwInBufferSize ;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD dwControlCode;
BYTE bUSBMode = 0x01; // USB Pipe Control
BYTE bReaderLEDs = 0x02; // red LED on
BYTE bLEDMode = 0x03; // application controlled

// TODO: Code for PAY application

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

dwControlCode = CM_IOCTL_SIGNAL;
InBuffer[0] = PAYPASS_SIGNAL_MAINLED;
InBuffer[1] = bUSBMode;
InBuffer[2] = (bReaderLEDs) & 0x03;
InBuffer[3] = bLEDMode;
dwInBufferSize = 4;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

January 11, 2010 Page 83 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

if (SCard_Status != SCARD_S_SUCCESS)
{

 // TODO: Code for PAY application

}

// TODO: Code for PAY application

A2.13 PayPassTM Signal Additional LEDs
The following code snipped shows how the addtitional three LEDs can be used under control of an application.
#define CM_IOCTL_SIGNAL SCARD_CTL_CODE (3058)
#define PAYPASS_SIGNAL_ADDLED 0x22

BYTE InBuffer[4];
BYTE OutBuffer[4];
DWORD dwInBufferSize ;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD dwControlCode;

BYTE bUSBMode = 0x01; // USB Pipe Control
BYTE bReaderLEDs = 0x1C; // all additional green LEDs on

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

dwControlCode = CM_IOCTL_SIGNAL;
InBuffer[0] = PAYPASS_SIGNAL_ADDLED;
InBuffer[1] = bUSBMode;
InBuffer[2] = (bReaderLEDs >> 2) & 0x07;
dwInBufferSize = 3;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

if (SCard_Status != SCARD_S_SUCCESS)
{
 // TODO: Code for PAY application

}

// TODO: Code for PAY application

A2.14 PayPassTM Signal Tone
The following code snipped shows how the buzzer can be used under control of an application.
#define CM_IOCTL_SIGNAL SCARD_CTL_CODE (3058)
#define ACOUSTIC_SIGNAL_BEEPER_ON 0x10
#define ACOUSTIC_SIGNAL_BEEPER_OFF 0x11

BYTE InBuffer[4];
BYTE OutBuffer[4];
DWORD dwInBufferSize ;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;

Page 84 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

DWORD dwControlCode;

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

dwControlCode = CM_IOCTL_SIGNAL;
InBuffer[0] = ACOUSTIC_SIGNAL_BEEPER_ON;
dwInBufferSize = 1;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

// TODO: Code for PAY application

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

dwControlCode = CM_IOCTL_SIGNAL;
InBuffer[0] = ACOUSTIC_SIGNAL_BEEPER_OFF;
dwInBufferSize = 1;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

// TODO: Code for PAY application

January 11, 2010 Page 85 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

Appendix B - Accessing iCLASS Memory

The following describes the free zones of two typical iCLASS memory layouts.

B1.1 Memory Layout
Shown is the memory layout of an iCLASS 2KS, iCLASS 16KS or page 0 of an iCLASS 8x2KS card.

Block Number Block Description (block size eight bytes)
‘00’ card serial number
‘01’ configuration block
’02’ e-Purse
‘03’ Kd (so-called debit key, key for application 1)
’04’ Kc (so-called credit key, key for Application 2)
’05’ application issuer area
‘06’

Shown is the memory layout of an iCLASS 8x2KS on pages 1 to 7.

…. HID application
’12’
’13’
….

‘1F’ (2KS)
‘FF’ (16KS)

Free zones in iCLASS 2KS, iCLASS 16KS or page 0 of iCLASS 8x2KS

Block Size: 8 bytes
’00’ card serial number
’01’ configuration block
’02’ e-Purse
’03’ Kd (so-called debit key, key for application 1)
’04’ Kc (so-called credit key, key for Application 2)
’05’ application issuer area
’06’
…. application 1 (free zones in iCLASS 8x2KS other than page 0)
‘xx’

‘xx’+1
….
‘1F’

application 2 (free zones in iCLASS 8x2KS other than page 0)

Page 86 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

B1.2 iCLASS Application 2 - Assigning Space
By default, iCLASS cards have the application limit set to the last byte of its respective memory area. This
means the complete memory area is reserved for application 1 and the size of application 2 is set to zero. The
application limit can be set to a different block number to support an additional application. To do this, the
page’s configuration block must be overwritten.

1. Select the page you want to configure.

2. Authenticate with the selected page Kd.

3. Read 8 bytes from block 0x01 – the configuration block.

4. Replace the first byte with the block number ‘xx’ of the new application limit.

5. Leave the remaining bytes of the configuration block unchanged and write all 8 bytes
back to the configuration block 0x01.

6. Remove the card.

B1.3 iCLASS Read/Write Memory - 2KS, 16KS or 8x2KS page 0

1. Insert card.

2. Connect to card.

3. For secured mode: Start Session.

4. Authenticate with KMC0 , (P1 = 0x01, P2 = 0x23).
If the key is not an iCLASS default key, the new key has to be loaded as KIAMC or KVAK ,
and in the authenticate command the key number of KIAMC or KVAK must be used.

5. Read/write any block (block number 0x13 to 0x1F for 2KS and 0xFF for 16KS).

6. For secured mode: End Session.

7. Disconnect from card.

8. Remove card.

B1.4 iCLASS 8x2KS Card - Pages 1 to 7 Read/Write Memory

1. Insert card.

2. Connect to card.

3. For secured mode: Start Session.

4. Select page N (N = 1 to 7).

5. Authenticate with KMDN / KMCN (P1 = 0x00 for KMDN ,or 0x01 for KMCN , P2 = KMDN ,/ KMCN
(refer to chapter 7.1Key Numbering Scheme).

6. If the key is other than iCLASS default key, the new key has to be loaded as KIAMC or KVAK

, and in the authenticate command the key number of KIAMC or KVAK must be used.

7. Read/write any block (block number 0x13 to 0x1F for 2KS and 0xFF for 16KS).

8. For secured mode: End Session.

9. Disconnect card.

10. Remove card.

January 11, 2010 Page 87 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

Appendix C - Terms and Abbreviations

The following lists abbreviations used throughout this document.

CSNR Card Serial Number
HDH Host Data Header
INSData Instruction Specific Data
KCUR Customer Read Key
KCUW Customer Write Key
KDOKM OMNIKEY Diversified Master Key
KENC Card Data Encryption Key
KIAMC Any Application Master Key
KMCN Page N Application 2’s Master Key of iCLASS card
KMDC HID Master Key Current
KMDN Page N Application 1’s Master Key of iCLASS card
KMDNB1 Page N Application 1’s on Book 1 Master Key of iCLASS card
KMDO HID Master Key Old
KMTD iCLASS Master Transport key for application 1
KMTC iCLASS Master Transport key for application 2
KOKM OMNIKEY Master Key
KS Session Key
KVAK Any Volatile Application Master Key
LcINS Instruction specific data (INSData) length.
LcR Card Response data length
PCD Proximity Coupling Device
PICC Proximity IC Card
PPSE Proximity Payment System Environment
RDH Reader Data Header
RSNR Reader Serial Number

Page 88 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

 Contactless Developer Guide - 5321-903_A.1.20

Appendix D - Version History

D1.1 Document Changes
Version Author(s) Date Description
A.1.20 W Waitz Jan. 11, 2010 MIFARE Plus, PAY API
A.1.19 S Schwab July 17, 2009 Chapter 9, supported tags
A.1.18 S Schwab July 16, 2009 Added footnotes for iCode SL2
A.1.17 W Waitz / L Hanna May 13, 2009 Review to version 1.16 and error correction
A.0 L Hanna / T Muth Feb 16, 2009 Updated to HID template
1.14 Werner Waitz Feb 11, 2008 Extended MIFARE DESFire APDU commands
1.13 Marc Jacquinot Aug 28, 2007 Minor edits, Reviewed recent changes.
1.12 Werner Waitz Aug 20, 2007 Add KMD0B1 (Default Master Key for application 1 of page 0

on Book 1), MIFARE Emulation Mode and
PC/SC 2.01 support for LRI64

1.11 Marc Jacquinot Nov 22, 2006 Added notes: mandatory Lc in secured mode
1.10 Marc Jacquinot Aug 18, 2006 FW 5.00, secured communication, finalized document for

release
1.01 Abu Ismail June 30, 2006 Reorganization, adding PC/SC 2.01 support
1.00 Abu Ismail Feb 08, 2005 Initial Version

D1.2 Firmware History
FW Version Special Features Remarks
5.20, 1.75 MIF, MKS, IST, ISE, EMD,

HSK,
iCLASS secured mode, HID application read,
iCLASS High Security Key supported,
EMD Suppression in firmware supported,
EMVCo Contactless L1

5.10 MIF, MKS, IST, ISE iCLASS secured mode, HID application read
5.00 MIF, MKS, IST, ISE iCLASS secured mode, HID application read
1.03, 1.04 MIF, MKS, IST iCLASS memory access
1.01, 1.02 MIF, MKS
1.00 MIF MIFARE support

D1.2.1 Synchronous Card Special Features
MIF = MIFARE Functionalities

MKS = MIFARE Key Storage

MSK = MIFARE Secured Key Loading

IST = iCLASS Standard Mode Communication

ISE = iCLASS Secured Mode Communication

EMD = Electromagnetic Disturbance

HSK = High Security Key

January 11, 2010 Page 89 of 90
© 2005 - 2010 HID Global Corporation. All rights reserved.

Page 90 of 90 January 11, 2010
© 2005 - 2010 HID Global Corporation. All rights reserved.

Contactless Developer Guide - 5321-903_A.1.20

Appendix E - References

[MIFARE] MIFARE Data Sheets

http://www.nxp.com/acrobat_download2/other/identification/M001053_MF1ICS50_rev5_3.pdf
[MSDNLIB] Microsoft Developer Network Library; http://msdn.microsoft.com/library/
[DESFIRE] MIFARE DESFire Data Sheets

http://www.nxp.com/documents/data_sheet/MF3ICD21_41_81_SDS.pdf
[PCSC_2.01] PC/SC Workgroup Specifications 2.01

http://www.pcscworkgroup.com/
[PICO16KS] PICOTAG and PICOCRYPT secured 16KS data sheet from the Inside Contactless
[PICO2KS] PICOTAG and PICOCRYPT secured 2KS data sheet from the Inside Contactless
[ICLASSD] iCLASS card specifications from HID.
[ISO7816-4] Information Technology Identification Cards Integrated Circuit(s) Cards with Contacts, Part 4:

Inter-industry Commands for Interchange
[LRI64] ST Microelectronics datasheet for LRI64
[iCODE SL2] ICODE SL2 Data Sheet

http://www.nxp.com/acrobat_download/other/identification/SL113730.pdf

http://www.nxp.com/acrobat_download2/other/identification/M001053_MF1ICS50_rev5_3.pdf
http://msdn.microsoft.com/library/
http://www.nxp.com/documents/data_sheet/MF3ICD21_41_81_SDS.pdf
http://www.pcscworkgroup.com/
http://www.nxp.com/acrobat_download/other/identification/SL113730.pdf

	1 Contactless Reader Coverage
	2 Getting Started
	2.1 Driver Installation
	2.1.1 Reader Name for Contact/Contactless Slot

	2.2 Diagnostic Tool
	2.2.1 Driver Version Detection
	2.2.2 OMNIKEY Proprietary API Detection
	2.2.3 Card and Reader Detection
	2.2.4 Card Type Detection and RFID Settings
	2.2.5 Air Interface Baud Rate Configuration

	3 PC/SC 2.0
	3.1 How to Access Contactless Cards through PC/SC
	3.2 ATR Generation
	3.2.1 CPU Cards
	3.2.2 Storage Cards

	4 Accessing Asynchronous Cards
	4.1 MIFARE DESFire Card
	4.1.1 Example: Write Card Data through ISO 7816-4 Framed APDU
	4.1.2 Example: Read Card Data through ISO 7816-4 Framed APDU

	5 Accessing Synchronous Cards (Storage)
	5.1 MIFARE Card
	5.1.1 MIFARE Increment (Card Command)
	5.1.2 MIFARE Decrement (Card Command)
	5.1.3 MIFARE Emulation Mode
	5.1.4 MIFARE Application Directory (MAD)

	5.2 iCLASS Card
	5.2.1 Card Access through SCardCLICCTransmit

	5.3 ST LRI64 Support (PC/SC 2.0 add-on)
	5.3.1 Update Binary
	5.3.2 Read Binary

	5.4 ISO15693-3 Memory Card Support

	6 Communication with MIFARE Plus
	6.1 ISO 14443 A – part 4 card communication
	6.2 ISO 14443 A – part 3 card communication
	6.3 Open Generic Session
	6.4 Generic Card Commands
	6.5 Close Generic Session

	7 CardMan 5x21-CL Keys
	7.1 Key Numbering Scheme
	7.2 Key Container and Slots
	7.3 Key Update Rules

	8 Standard Communication with iCLASS Card
	8.1 APDU Structure for Standard Communication
	8.2 Commands Available in Standard Communication Mode
	8.2.1 Select Page (Card Command)
	8.2.2 Load Key
	8.2.3 GetKeySlotInfo (Reader Command)
	8.2.4 Authenticate (Card Command)
	8.2.5 Read (Card Command)
	8.2.6 Update (Card Command)

	8.3 Communication in Standard Mode

	9 Secured Communication with the iCLASS Card
	9.1 Multi-Step Approach to a Secure Card Reader System
	9.1.1 Authenticity between Host and Reader
	9.1.2 Confidentiality of USB Data Exchange
	9.1.3 Integrity of Transmitted Data
	9.1.4 Authenticity Between Reader and Card
	9.1.5 Integrity of the Radio Frequency (RF) Transmission
	9.1.6 Confidentiality of the RF Transmission
	9.1.7 Authentication of the Host for Read/Write Session
	9.1.8 Protection against Known Attacks

	9.2 APDU Structure for Secured Communication
	9.2.1 Data Header (DH)
	9.2.2 Signature Generation
	9.2.3 Session Key Generation
	9.2.4 Proprietary Host and Reader Datagram Example

	9.3 Instructions (INS) for Secured Communication
	9.3.1 Manage Session (Reader Command)
	9.3.2 Select Page (Card Command)
	9.3.3 Load Key (Reader Command)
	9.3.4 Authenticate (Card Command)
	9.3.5 Read (Card Command)
	9.3.6 Update (Card Command)
	9.3.7 GetKeySlotInfo (Reader Command)
	9.3.8 Update Card Key

	9.4 Communication at Secured Mode
	9.5 Session at Secured Mode APDUs Example

	10 Reading ISO15693
	10.1 Products
	10.2 Tags
	10.3 Commands
	10.3.1 Get Data
	10.3.2 Put Data
	10.3.3 Lock
	10.3.4 Get Security Status
	10.3.5 Read Binary Command
	10.3.6 Update Binary Command
	10.3.7 Update Single Byte Command

	11 OMNIKEY 5321 PAY Application Interface
	11.1 PayPassTM card transactions
	11.2 LED and Buzzer control
	11.2.1 SIGNAL Command – PayPass Signal
	11.2.2 SIGNAL Command – PayPass Signal MAIN LED
	11.2.3 SIGNAL Command – PayPass Signal Additional LEDs
	11.2.4 SIGNAL Command – PayPass Signal Tone

	11.3 Switch-over the operating mode

	12 CardMan 5125 Registry Settings
	12.1 Legend / Additional Information
	12.2 Automatic Mode
	12.3 Windows Custom Mode
	12.3.1 H10301 format example
	12.3.2 Example: H10302 format
	12.3.3 H10304 Format Example
	12.3.4 Corp 1000 Format Example

	12.4 Linux & Mac OS X Custom Mode

